164 research outputs found

    Task modules Partitioning, Scheduling and Floorplanning for Partially Dynamically Reconfigurable Systems Based on Modern Heterogeneous FPGAs

    Full text link
    Modern field programmable gate array(FPGA) can be partially dynamically reconfigurable with heterogeneous resources distributed on the chip. And FPGA-based partially dynamically reconfigurable system(FPGA-PDRS) can be used to accelerate computing and improve computing flexibility. However, the traditional design of FPGA-PDRS is based on manual design. Implementing the automation of FPGA-PDRS needs to solve the problems of task modules partitioning, scheduling, and floorplanning on heterogeneous resources. Existing works only partly solve problems for the automation process of FPGA-PDRS or model homogeneous resource for FPGA-PDRS. To better solve the problems in the automation process of FPGA-PDRS and narrow the gap between algorithm and application, in this paper, we propose a complete workflow including three parts, pre-processing to generate the list of task modules candidate shapes according to the resources requirements, exploration process to search the solution of task modules partitioning, scheduling, and floorplanning, and post-optimization to improve the success rate of floorplan. Experimental results show that, compared with state-of-the-art work, the proposed complete workflow can improve performance by 18.7\%, reduce communication cost by 8.6\%, on average, with improving the resources reuse rate of the heterogeneous resources on the chip. And based on the solution generated by the exploration process, the post-optimization can improve the success rate of the floorplan by 14\%

    In silico screening of transaminase using semi-empirical QM/MM approach

    Get PDF
    Please click Additional Files below to see the full abstract

    In silico screening of transaminase using semi-empirical QM/MM approach

    Get PDF
    Please click Additional Files below to see the full abstract

    Advances in the Bacteriophage-Based Precise Identification and Magnetic Relaxation Switch Sensor for Rapid Detection of Foodborne Pathogens

    Get PDF
    The development of novel and highly specific technologies for the rapid and sensitive detection of foodborne pathogens is very important for disease prevention and control. Bacteriophages can recognize viable and unviable bacteria, replacing antibodies as the recognition element in the immune response, which are currently being widely developed in novel precise identification biosensors. Magnetic relaxation switch sensors based on the magnetic relaxation signal has been used to construct a variety of background-free novel biosensors in recent years, which can realize rapid detection of foodborne pathogens. This chapter will mainly introduce the latest developments and future prospects of bacteriophages in the field of accurate identifications for foodborne pathogens. At the same time, it will introduce the research progress and development direction of novel magnetic relaxation switch sensors for detecting foodborne pathogens
    • …
    corecore