15 research outputs found

    Hydroxysafflower Yellow A Inhibits Vascular Adventitial Fibroblast Migration via NLRP3 Inflammasome Inhibition through Autophagy Activation

    No full text
    Inflammation is closely associated with progression of vascular remodeling. The NLRP3 inflammasome is the key molecule that promotes vascular remodeling via activation of vascular adventitia fibroblast (VAF) proliferation and differentiation. VAFs have a vital effect on vascular remodeling that could be improved using hydroxysafflower yellow A (HSYA). However, whether HSYA ameliorates vascular remodeling through inhibition of NLRP3 inflammasome activation has not been explored in detail. Here, we cultured primary VAFs and analyzed the migration of VAFs induced by angiotensin II (ANG II) to determine the potential effects and mechanism of HSYA on VAF migration. The results thereof showed that HSYA remarkably inhibited ANG II-induced VAF migration, NLRP3 inflammasome activation, and the TLR4/NF-κB signaling pathway in a dose-dependent manner. In addition, it is worth noting that LPS promoted ANG II-induced VAF migration and NLRP3 inflammasome assembly, which could be significantly reversed using HSYA. Moreover, HSYA could be used to inhibit NLRP3 inflammasome activation by promoting autophagy. In conclusion, HSYA could inhibit ANG II-induced VAF migration through autophagy activation and inhibition of NLRP3 inflammasome activation through the TLR4/NF-κB signaling pathway

    The complete chloroplast genome of Piptanthus nepalensis, a medicinal plant

    No full text
    Piptanthus nepalensis (Hooker) Sweet is a semi deciduous or deciduous shrub belonging to the genus Piptanthus, Leguminosae. P. nepalensis has been used as a folk medicinal herb in Nepal and was cultivated all over the world as an ornamental plant. In the present study, we sequenced the entire genome of the chloroplast of P. nepalensis. The total length of the chloroplast genome in P. nepalensis is 152,195 bp, including a large single-copy region of 82,048 bp, a small single-copy region of 17,675 bp, and a pair of inverted repeats regions of 26,236 bp. The overall guanine-cytosine (GC) content of the genome was 36.7%. There are 131 genes in the chloroplast genome of P. nepalensis, including 85 protein-coding genes, 8 rRNA genes and 38 tRNA genes. Phylogenetic analysis showed that P. nepalensis is closely related to Maackia floribunda

    The complete chloroplast genome of Sophora davidii (Fabaceae) and its phylogenetic implications

    No full text
    Sophora davidii (Franch.) Pavol. is a deciduous or evergreen shrubs belonging to the genus Sophora, Fabaceae. The roots of S. davidii have been traditionally used as a medicinal herb in China to clear internal heat, relieve sore throat, and reduce swelling. Here we sequenced the whole genome of the chloroplast of S. davidii. The complete length of the chloroplast genome in S. davidii is 153,584 bp, containing a large single-copy region of 83,930 bp, a small single-copy region of 15,008 bp, and a pair of inverted repeats regions of 25,823 bp. The total guanine-cytosine (GC) percentage of the chloroplast genome was 36.7%. A total of 131 genes were annotated from the chloroplast genome of S. davidii, including 85 protein-coding genes, 8 rRNA genes and 38 tRNA genes. The phylogenetic analysis showed that S. davidii is closely related to the other three species of genus Sophora

    Ethylene Response Factor LlERF110 Mediates Heat Stress Response via Regulation of <i>LlHsfA3A</i> Expression and Interaction with LlHsfA2 in Lilies (<i>Lilium longiflorum</i>)

    No full text
    Heat stress seriously affects the quality of cut lily flowers. The ethylene response factors (ERFs) participate in heat stress response in many plants. In this study, heat treatment increased the production of ethylene in lily leaves, and exogenous ethylene treatment enhanced the heat resistance of lilies. LlERF110, an important transcription factor in the ethylene signaling pathway, was found in the high-temperature transcriptome. The coding region of LlERF110 (969 bp) encodes 322 amino acids and LlERF110 contains an AP2/ERF typical domain belonging to the ERF subfamily group X. LlERF110 was induced by ethylene and was expressed constitutively in all tissues. LlERF110 is localized in the nucleus and has transactivation activity. Virus-induced gene silencing of LlERF110 in lilies reduced the basal thermotolerance phenotypes and significantly decreased the expression of genes involved in the HSF-HSP pathway, such as LlHsfA2, LlHsfA3A, and LlHsfA5, which may activate other heat stress response genes; and LlHsp17.6 and LlHsp22, which may protect proteins under heat stress. LlERF110 could directly bind to the promoter of LlHsfA3A and activate its expression according to the yeast one hybrid and dual-luciferase reporter assays. LlERF110 interacts with LlHsfA2 in the nucleus according to BiFC and the yeast two-hybrid assays. In conclusion, these results indicate that LlERF110 plays an important role in the basal thermotolerance of lilies via regulation of the HSF-HSP pathway, which could be the junction of the heat stress response pathway and the ethylene signaling pathway

    The Heat Stress Transcription Factor LlHsfA4 Enhanced Basic Thermotolerance through Regulating ROS Metabolism in Lilies (Lilium Longiflorum)

    No full text
    Heat stress severely affects the annual agricultural production. Heat stress transcription factors (HSFs) represent a critical regulatory juncture in the heat stress response (HSR) of plants. The HsfA1-dependent pathway has been explored well, but the regulatory mechanism of the HsfA1-independent pathway is still under-investigated. In the present research, HsfA4, an important gene of the HsfA1-independent pathway, was isolated from lilies (Lilium longiflorum) using the RACE method, which encodes 435 amino acids. LlHsfA4 contains a typical domain of HSFs and belongs to the HSF A4 family, according to homology comparisons and phylogenetic analysis. LlHsfA4 was mainly expressed in leaves and was induced by heat stress and H2O2 using qRT-PCR and GUS staining in transgenic Arabidopsis. LlHsfA4 had transactivation activity and was located in the nucleus and cytoplasm through a yeast one hybrid system and through transient expression in lily protoplasts. Over expressing LlHsfA4 in Arabidopsis enhanced its basic thermotolerance, but acquired thermotolerance was not achieved. Further research found that heat stress could increase H2O2 content in lily leaves and reduced H2O2 accumulation in transgenic plants, which was consistent with the up-regulation of HSR downstream genes such as Heat stress proteins (HSPs), Galactinol synthase1 (GolS1), WRKY DNA binding protein 30 (WRKY30), Zinc finger of Arabidopsis thaliana 6 (ZAT6) and the ROS-scavenging enzyme Ascorbate peroxidase 2 (APX2). In conclusion, these results indicate that LlHsfA4 plays important roles in heat stress response through regulating the ROS metabolism in lilies

    Temperature and pH Responsive Hydrogels Using Methacrylated Lignosulfonate Cross-Linker: Synthesis, Characterization, and Properties

    No full text
    In this work, biobased hydrogels with temperature and pH responsive properties were prepared by copolymerizing <i>N</i>-isopropyl­acrylamide (NIPAM), itaconic acid (IA), and methacrylated lignosulfonate (MLS), where the multifunctional MLS served as a novel macro-cross-linker. The network structures of the lignosulfonate-NIPAM-IA hydrogels (LNIH) were characterized and confirmed by elemental analysis, Fourier transform infrared, and <sup>13</sup>C nuclear magnetic resonance. The equilibrium swelling capacity of the LNIH hydrogel decreased from 31.6 to 19.1 g/g with MLS content increasing from 3.7 to 14.3%, suggesting a strong dependence of water absorption of the gel on MLS content. LNIH hydrogels showed temperature-sensitive behaviors with volume phase transition temperature (VPTT) around the body temperature, which was also influenced by MLS content. Moreover, all LNIH hydrogels exhibited pH sensitivity in the range of pH 3.0 to 9.1. Rheological study indicated that mechanical strength of the gel also increased with MLS content. The results from this study suggest that lignosulfonate derivative MLS is a potential feedstock serving both water-absorbing moiety and cross-linker for preparation of biobased smart hydrogels
    corecore