9 research outputs found

    Stationary distribution for a three-dimensional stochastic viral infection model with general distributed delay

    Get PDF
    This work examines a stochastic viral infection model with a general distributed delay. We transform the model with weak kernel case into an equivalent system through the linear chain technique. First, we establish that a global positive solution to the stochastic system exists and is unique. We establish the existence of a stationary distribution of a positive solution under the stochastic condition R^s > 0 , also referred to as a stationary solution, by building appropriate Lyapunov functions. Finally, numerical simulation is proved to verify our analytical result and reveals the impact of stochastic perturbations on disease transmission

    In vitro inhibition of porcine reproductive and respiratory syndrome virus replication by short antisense oligonucleotides with locked nucleic acid modification

    No full text
    Abstract Background Porcine reproductive and respiratory syndrome virus (PRRSV) causes porcine reproductive and respiratory syndrome (PRRS), which is currently insufficiently controlled. From a previous small-scale screen we identified an effective DNA-based short antisense oligonucleotide (AS-ON) targeting viral NSP9, which could inhibit PRRSV replication in both Marc-145 cells and pulmonary alveolar macrophages (PAMs). The objective of this study was to explore the strategy of incorporating locked nucleic acids (LNAs) to achieve better inhibition of PRRSV replication in vitro. Methods The effective DNA-based AS-ON (YN8) was modified with LNAs at both ends as gap-mer (LNA-YN8-A) or as mix-mer (LNA-YN8-B). Marc-145 cells or PAMs were infected with PRRSV and subsequently transfected. Results Compared with the DNA-based YN8 control, the two AS-ONs modified with LNAs were found to be significantly more effective in decreasing the cytopathic effect (CPE) induced by PRRSV and thus in maintaining cell viability. LNA modifications conferred longer lifetimes to the AS-ON in the cell culture model. Viral ORF7 levels were more significantly reduced at both RNA and protein levels as shown by quantitative PCR, western blot and indirect immunofluorescence staining. Moreover, transfection with LNA modified AS-ON reduced the PRRSV titer by 10-fold compared with the YN8 control. Conclusion Taken together, incorporation of LNA into AS-ON technology holds higher therapeutic promise for PRRS control

    Geological characteristics and models of fault-fold-fracture body in deep tight sandstone of the second member of Upper Triassic Xujiahe Formation in Xinchang structural belt of Sichuan Basin, SW China

    No full text
    In the second member of the Upper Triassic Xujiahe Formation (T3x2) in the Xinchang area, western Sichuan Basin, only a low percent of reserves has been recovered, and the geological model of gas reservoir sweet spot remains unclear. Based on a large number of core, field outcrop, test and logging-seismic data, the T3x2 gas reservoir in the Xinchang area is examined. The concept of fault-fold-fracture body (FFFB) is proposed, and its types are recognized. The main factors controlling fracture development are identified, and the geological models of FFFB are established. FFFB refers to faults, folds and associated fractures reservoirs. According to the characteristics and genesis, FFFBs can be divided into three types: fault-fracture body, fold-fracture body, and fault-fold body. In the hanging wall of the fault, the closer to the fault, the more developed the effective fractures; the greater the fold amplitude and the closer to the fold hinge plane, the more developed the effective fractures. Two types of geological models of FFFB are established: fault-fold fracture, and matrix storage and permeability. The former can be divided into two subtypes: network fracture, and single structural fracture, and the later can be divided into three subtypes: bedding fracture, low permeability pore, and extremely low permeability pore. The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production. The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China
    corecore