37 research outputs found

    A Comprehensive Analysis of the Lysine Acetylome in the Aquatic Animals Pathogenic Bacterium Vibrio mimicus

    Get PDF
    Protein lysine acetylation is an evolutionarily conserved post-translational modification (PTM), which is dynamic and reversible, playing a crucial regulatory role in almost every aspect of metabolism, of both eukaryotes and prokaryotes. Several global lysine acetylome studies have been carried out in various bacteria, but thus far, there have been no reports of lysine acetylation for the commercially important aquatic animal pathogen Vibrio mimicus. In the present study, we used anti-Ac-K antibody beads to highly sensitive immune-affinity purification and combined high-resolution LC-MS/MS to perform the first global lysine acetylome analysis in V. mimicus, leading to the identification of 1,097 lysine-acetylated sites on 582 proteins, and more than half (58.4%) of the acetylated proteins had only one site. The analysis of acetylated modified peptide motifs revealed six significantly enriched motifs, namely, KacL, KacR, L(-2) KacL, LKacK, L(-7) EKac, and IEKac. In addition, bioinformatic assessments state clearly that acetylated proteins have a hand in many important biological processes in V. mimicus, such as purine metabolism, ribosome, pyruvate metabolism, glycolysis/gluconeogenesis, the TCA cycle, and so on. Moreover, 13 acetylated proteins were related to the virulence of V. mimicus. To sum up, this is a comprehensive analysis whole situation protein lysine acetylome in V. mimicus and provides an important foundation for in-depth study of the biological function of lysine acetylation in V. mimicus

    Paradigm of magnetic domain wall-based In-memory computing

    Get PDF
    While conventional microelectronic integrated circuits based on electron charges approach the theoretical limitations in foreseeable future, next-generation nonvolatile logic units based on electron spins have the potential to build logic networks of low power consumption. Central to this spin-based architecture is the development of a paradigm for in-memory computing with magnetic logic units. Here, we demonstrate the basic function of a transistor logic unit with patterned Y-shaped NiFe nanowires by gate-controlled domain-wall pinning and depinning. This spin-based architecture possesses the critical functionalities of transistors and can achieve a programmable logic gate by using only one Y-shaped nanostructure, which represents a universal design currently lacking for in-memory computing

    Defect-correlated skyrmions and controllable generation in perpendicularly magnetized CoFeB ultrathin films

    Get PDF
    Skyrmions have attracted significant interest due to their topological spin structures and fascinating physical features. The skyrmion phase arises in materials with a Dzyaloshinskii–Moriya interaction at interfaces or in volume of non-centrosymmetric materials. Although skyrmions have been demonstrated experimentally, the general critical intrinsic relationship among fabrication, microstructures, magnetization, and the existence of skyrmions remains to be established. Here, two series of CoFeB ultrathin films with controlled atomic scale structures are employed to reveal this relationship. The amount of defects was artificially tuned by inverting the growth order, and skyrmions were shown to be preferentially formed in samples with more defects. By utilizing first-order reversal curves, the stable region and the skyrmion densities can be efficiently controlled in the return magnetization loops. These findings establish a general internal link from sample preparation to skyrmion generation and provide a general method for controlling skyrmion density

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    A Gaussian Process State Space Model Fusion Physical Model and Residual Analysis for Fatigue Evaluation

    No full text
    Residual stress is closely related to the evolution process of the component fatigue state, but it can be affected by various sources. Conventional fatigue evaluation either focuses on the physical process, which is limited by the complexity of the physical process and the environment, or on monitored data to form a data-driven model, which lacks a relation to the degenerate process and is more sensitive to the quality of the data. This paper proposes a fusion-driven fatigue evaluation model based on the Gaussian process state–space model, which considers the importance of physical processes and the residuals. Through state–space theory, the probabilistic space evaluation results of the Gaussian process and linear physical model are used as the hidden state evaluation results and hidden state change observation function, respectively, to construct a complete Gaussian process state–space framework. Then, through the solution of a particle filter, the importance of the residual is inferred and the fatigue evaluation model is established. Fatigue tests on titanium alloy components were conducted to verify the effectiveness of the fatigue evaluation model. The results indicated that the proposed models could correct evaluation results that were far away from the input data and improve the stability of the prediction

    Synthesis, Characterization, and Electrical Properties of SiCN Nanowires

    No full text

    Experimental study of the thermoacoustic effect in magnetoacoustic tomography

    No full text
    Magnetoacoustic tomography (MAT) is an emerging noninvasive electrical conductivity imaging that combines the high dielectric contrast of tissues and excellent resolutions of ultrasonography. In this paper, we have found the thermoacoustic (TA) effect in the measurement of MAT. Several materials with different conductivities have been measured by a MAT system with and without a static magnetic field. The acoustic signals have been analyzed and compared in the time domain and the frequency domain, respectively. It is found that the TA effect is related to the material characteristics. For the tissue-like materials with low conductivities, the TA signals caused by the TA effect are observable and cannot be ignored in the time and frequency domains. It means that the TA effect of biological tissues should be considered in MAT system in the future

    Performance and Energy Utilization Efficiency of an Expanded Granular Sludge Bed Reactor in the Treatment of Cassava Alcohol Wastewater

    No full text
    In recent years, expanded granular sludge blanket (EGSB) reactor has been widely used in the treatment of high-concentration organic wastewater, but its research mainly focused on treatment efficiency and microbial community composition. There were few studies on the relationship of operation conditions and energy utilization efficiency. Therefore, the methanogenic characteristics and energy utilization efficiency of EGSB reactor were studied by using cassava alcohol wastewater (CAW) as a raw material at (36 ± 1) °C. The results show that the degradation of volatile fatty acids (VFAs) is an important step affecting methane generation compared to the hydrolysis stage. When organic load rate (OLR) was 12.73 gCOD/L·d, the chemical oxygen demand (COD) removal rate was above 95%, the methane production efficiency of raw material was 202.73 mLCH4/ gCOD·d, the four-stage conversion efficiency was the highest, and the energy utilization efficiency was 62.26%, which was the optimal stage for EGSB reactor to treat CAW. These findings support high-efficiency bioenergy recovery from CAW in practice and highlight the potential wide application of high-performance anaerobic reactors for CAW
    corecore