73 research outputs found

    Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation

    Get PDF
    Karyotypes of most bird species are characterized by around 2n = 80 chromosomes, comprising 7–10 pairs of large- and medium-sized macrochromosomes including sex chromosomes and numerous morphologically indistinguishable microchromosomes. The Falconinae of the Falconiformes has a different karyotype from the typical avian karyotype in low chromosome numbers, little size difference between macrochromosomes and a smaller number of microchromosomes. To characterize chromosome structures of Falconinae and to delineate the chromosome rearrangements that occurred in this subfamily, we conducted comparative chromosome painting with chicken chromosomes 1–9 and Z probes and microchromosome-specific probes, and chromosome mapping of the 18S–28S rRNA genes and telomeric (TTAGGG) n sequences for common kestrel (Falco tinnunculus) (2n = 52), peregrine falcon (Falco peregrinus) (2n = 50) and merlin (Falco columbarius) (2n = 40). F. tinnunculus had the highest number of chromosomes and was considered to retain the ancestral karyotype of Falconinae; one and six centric fusions might have occurred in macrochromosomes of F. peregrinus and F. columbarius, respectively. Tandem fusions of microchromosomes to macrochromosomes and between microchromosomes were also frequently observed, and chromosomal locations of the rRNA genes ranged from two to seven pairs of chromosomes. These karyotypic features of Falconinae were relatively different from those of Accipitridae, indicating that the drastic chromosome rearrangements occurred independently in the lineages of Accipitridae and Falconinae

    IL-2/IL-2 Receptor Pathway Plays a Crucial Role in the Growth and Malignant Transformation of HTLV-1-Infected T Cells to Develop Adult T-Cell Leukemia

    Get PDF
    T cells infected with human T-cell leukemia virus type 1 (HTLV-1) transform into malignant/leukemic cells and develop adult T-cell leukemia (ATL) after a long latency period. The tax (transactivator from the X-gene region) and HBZ (HTLV-1 bZIP factor) genes of HTLV-1 play crucial roles in the development of ATL. The process and mechanism by which HTLV-1-infected T cells acquire malignancy and develop ATL remain to be elucidated. Constitutive expression of interleukin-2 (IL-2) receptor α-chain (IL-2Rα/CD25), induced by the tax and HBZ genes of HTLV-1, on ATL cells implicates the involvement of IL-2/IL-2R pathway in the growth and development of ATL cells in vivo. However, the leukemic cells in the majority of ATL patients appeared unresponsive to IL-2, raising controversies on the role of this pathway for the growth of ATL cells in vivo. Here, we report the establishment of 32 IL-2-dependent T-cell lines infected with HTLV-1 from 26 ATL patients, including eight leukemic cell lines derived from five ATL patients, while no T-cell lines were established without IL-2. We have shown that the IL-2-dependent ATL cell lines evolved into IL-2-independent/-unresponsive growth phase, resembling ATL cells in vivo. Moreover, the IL-2-dependent non-leukemic T-cell lines infected with HTLV-1 acquired IL-2-independency and turned into tumor-producing cancer cells as with the ATL cell lines. HTLV-1-infected T cells in vivo could survive and proliferate depending on IL-2 that was produced in vivo by the HTLV-1-infected T cells of ATL patients and patients with HTLV-1-associated diseases and, acts as a physiological molecule to regulate T-cell growth. These results suggest that ATL cells develop among the HTLV-1-infected T cells growing dependently on IL-2 and that most of the circulating ATL cells progressed to become less responsive to IL-2, acquiring the ability to proliferate without IL-2

    Contamination by arsenic and other trace elements in drinking water and residents in Vietnam

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    Direct evidence for pitavastatin induced chromatin structure change in the KLF4 gene in endothelial cells.

    Get PDF
    Statins exert atheroprotective effects through the induction of specific transcriptional factors in multiple organs. In endothelial cells, statin-dependent atheroprotective gene up-regulation is mediated by Kruppel-like factor (KLF) family transcription factors. To dissect the mechanism of gene regulation, we sought to determine molecular targets by performing microarray analyses of human umbilical vein endothelial cells (HUVECs) treated with pitavastatin, and KLF4 was determined to be the most highly induced gene. In addition, it was revealed that the atheroprotective genes induced with pitavastatin, such as nitric oxide synthase 3 (NOS3) and thrombomodulin (THBD), were suppressed by KLF4 knockdown. Myocyte enhancer factor-2 (MEF2) family activation is reported to be involved in pitavastatin-dependent KLF4 induction. We focused on MEF2C among the MEF2 family members and identified a novel functional MEF2C binding site 148 kb upstream of the KLF4 gene by chromatin immunoprecipitation along with deep sequencing (ChIP-seq) followed by luciferase assay. By applying whole genome and quantitative chromatin conformation analysis {chromatin interaction analysis with paired end tag sequencing (ChIA-PET), and real time chromosome conformation capture (3C) assay}, we observed that the MEF2C-bound enhancer and transcription start site (TSS) of KLF4 came into closer spatial proximity by pitavastatin treatment. 3D-Fluorescence in situ hybridization (FISH) imaging supported the conformational change in individual cells. Taken together, dynamic chromatin conformation change was shown to mediate pitavastatin-responsive gene induction in endothelial cells

    HTLV-1 modulates the frequency and phenotype of FoxP3+CD4+ T cells in virus-infected individuals.

    Get PDF
    [Background]HTLV-1 utilizes CD4 T cells as the main host cell and maintains the proviral load via clonal proliferation of infected CD4^+ T cells. Infection of CD4^+ T cells by HTLV-1 is therefore thought to play a pivotal role in HTLV-1-related pathogenicity, including leukemia/lymphoma of CD4^+ T cells and chronic inflammatory diseases. Recently, it has been reported that a proportion of HTLV-1 infected CD4^+ T cells express FoxP3, a master molecule of regulatory T cells. However, crucial questions remain unanswered on the relationship between HTLV-1 infection and FoxP3 expression. [Results]To investigate the effect of HTLV-1 infection on CD4^+ T-cell subsets, we used flow cytometry to analyze the T-cell phenotype and HTLV-1 infection in peripheral mononuclear cells (PBMCs) of four groups of subjects, including 23 HTLV-1-infected asymptomatic carriers (AC), 10 patients with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), 10 patients with adult T-cell leukemia (ATL), and 10 healthy donors. The frequency of FoxP3^+ cells in CD4^+ T cells in AC with high proviral load and patients with HAM/TSP or ATL was higher than that in uninfected individuals. The proviral load was positively correlated with the percentage of CD4^+ T cells that were FoxP3^+. The CD4^+FoxP3^+ T cells, themselves, were frequently infected with HTLV-1. We conclude that FoxP3^+ T- cells are disproportionately infected with HTLV-1 during chronic infection. We next focused on PBMCs of HAM/TSP patients. The expression levels of the T_[reg] associated molecules CTLA-4 and GITR were decreased in CD4+FoxP3+ T cells. Further we characterized FoxP3^+CD4^+ T-cell subsets by staining CD45RA and FoxP3, which revealed an increase in CD45RA−FoxP3^[low] non-suppressive T-cells. These findings can reconcile the inflammatory phenotype of HAM/TSP with the observed increase in frequency of FoxP3^+ cells. Finally, we analyzed ATL cells and observed not only a high frequency of FoxP3 expression but also wide variation in FoxP3 expression level among individual cases. [Conclusions]HTLV-1 infection induces an abnormal frequency and phenotype of FoxP3^+CD4^+ T cells
    corecore