140 research outputs found

    酸化ストレスによる網膜色素上皮細胞内の接着蛋白質claudin-1の発現変化

    Get PDF
    Age-related macular degeneration (AMD) is a neurodegenerative disease associated with irreversible loss of central vision in the elderly. Disruption of the homeostatic function of the retinal pigment epithelium (RPE) is thought to be fundamental to AMD pathogenesis, and oxidative stress is implicated in the associated RPE damage. We examined the effects of oxidative stress on the expression of junctional proteins in cultured human retinal pigment epithelial (ARPE-19) cells. Reverse transcription-PCR and immunoblot analyses revealed that expression of the tight-junction protein claudin-1 was increased at both the mRNA and protein levels 8 to 12 h after exposure of ARPE-19 cells to H2O2, whereas that of the tight-junction protein ZO-1 or the adherens-junction protein N-cadherin was unaffected. Expression of both claudin-1 and N-cadherin was down-regulated by exposure of the cells to H2O2 for longer periods (24 to 48 h). Oxidative stress also induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) with a time course similar to that apparent for the up-regulation of claudin-1 expression. Furthermore, the increase in the abundance of claudin-1 induced by H2O2 was blocked by the p38 inhibitor SB203580. Phosphorylation of the MAPKs ERK and JNK was not affected by H2O2. Our results suggest that modulation of claudin-1 expression in the RPE by oxidative stress may contribute to the pathogenesis of AMD.広島大学(Hiroshima University)博士(医学)Philosophy in Medical Sciencedoctora

    Mathematics & Science Education and Income: An Empirical Study in Japan

    Get PDF
    Abstract: Since the second half of the 1990s, the decline in academic standards in mathematics and science among undergraduate students in Japan has been noted. Despite this, problems in science education have become increasingly severe, and their impact is having a mounting effect on Japan's economy. This paper studies the return to a university education in Japan by taking into account the relative ranking of the universities. We present an empirical analysis of how annual income differs depending on whether a major is natural science or humanities. We have found that science graduates have a higher average income than humanities graduates indicates that the added value they are producing is higher than that of humanities graduates. Of particular interest is the fact that a comparison of humanities graduates of A rank universities who did not sit admission examinations in mathematics with science graduates of B rank university showed that it was the science graduates who recorded higher average income at every age grade. The above comparison also reveals that even those humanities graduates of A rank universities who did sit admission examinations in mathematics are out-earned by science graduates of B rank universities in the under 30 and 55 and over age groups

    Directed Differentiation of Patient-Specific Induced Pluripotent Stem Cells Identifies the Transcriptional Repression and Epigenetic Modification of NKX2-5, HAND1, and NOTCH1 in Hypoplastic Left Heart Syndrome

    Get PDF
    The genetic basis of hypoplastic left heart syndrome (HLHS) remains unknown, and the lack of animal models to reconstitute the cardiac maldevelopment has hampered the study of this disease. This study investigated the altered control of transcriptional and epigenetic programs that may affect the development of HLHS by using disease-specific induced pluripotent stem (iPS) cells. Cardiac progenitor cells (CPCs) were isolated from patients with congenital heart diseases to generate patient-specific iPS cells. Comparative gene expression analysis of HLHS- and biventricle (BV) heart-derived iPS cells was performed to dissect the complex genetic circuits that may promote the disease phenotype. Both HLHS- and BV heart-derived CPCs were reprogrammed to generate disease-specific iPS cells, which showed characteristic human embryonic stem cell signatures, expressed pluripotency markers, and could give rise to cardiomyocytes. However, HLHS-iPS cells exhibited lower cardiomyogenic differentiation potential than BV-iPS cells. Quantitative gene expression analysis demonstrated that HLHS-derived iPS cells showed transcriptional repression of NKX2-5, reduced levels of TBX2 and NOTCH/HEY signaling, and inhibited HAND1/2 transcripts compared with control cells. Although both HLHS-derived CPCs and iPS cells showed reduced SRE and TNNT2 transcriptional activation compared with BV-derived cells, co-transfection of NKX2-5, HAND1, and NOTCH1 into HLHS-derived cells resulted in synergistic restoration of these promoters activation. Notably, gain- and loss-of-function studies revealed that NKX2-5 had a predominant impact on NPPA transcriptional activation. Moreover, differentiated HLHS-derived iPS cells showed reduced H3K4 dimethylation as well as histone H3 acetylation but increased H3K27 trimethylation to inhibit transcriptional activation on the NKX2-5 promoter. These findings suggest that patient-specific iPS cells may provide molecular insights into complex transcriptional and epigenetic mechanisms, at least in part, through combinatorial expression of NKX2-5, HAND1, and NOTCH1 that coordinately contribute to cardiac malformations in HLHS

    Phenotypes of pain behavior in phospholipase C-related but catalytically inactive protein type 1 knockout mice

    Get PDF
    Phospholipase C-related inactive protein (PRIP) plays important roles in trafficking to the plasma membrane of GABAA receptor, which is involved in the dominant inhibitory neurotransmission in the spinal cord and plays an important role in nociceptive transmission. However, the role of PRIP in pain sensation remains unknown. In this study, we investigated the phenotypes of pain behaviors in PRIP type 1 knockout (PRIP-1 -/- ) mice. The mutant mice showed hyperalgesic responses in the second phase of the formalin test and the von Frey test as compared with those in wild-type mice. In situ hybridization studies of GABAA receptors revealed significantly decreased expression of γ2 subunit mRNA in the dorsal and ventral horns of the spinal cord in PRIP-1 -/- mice, but no difference in α1 subunit mRNA expression. β2 subunit mRNA expression was significantly higher in PRIP-1 -/- mice than in wild-type mice in all areas of the spinal cord. On the other hand, the slow decay time constant for the spontaneous inhibitory current was significantly increased by treatment with diazepam in wild-type mice, but not in PRIP-1 -/- mice. These results suggest that PRIP-1 -/- mice exhibit the changes of the function and subunits expression of GABAA receptor in the spinal cord, which may be responsible for abnormal pain sensation in these mice

    Multimodality imaging of biatrial myxomas in an asymptomatic patient

    Get PDF
    AbstractMyxomas are located in the left atrium in 75–80% of cases and almost always present with signs and symptoms of a thromboembolic event. Biatrial myxomas are rare, and their incidence is generally less than 2.5% of all myxomas. We herein present a case of biatrial myxomas as an incidental finding by echocardiography where the patient underwent surgery. Echocardiography continues to be the initial imaging modality for intracardiac masses. Cardiac magnetic resonance provides superior tissue characterization, particularly important in differentiating a myxoma from a thrombus. Appropriate use of these non-invasive imaging modalities may lead to a correct diagnosis and good outcome.<Learning objective: In this report we present a rare case of cardiac biatrial myxomas. Multimodality imaging, especially delayed enhancement cardiac magnetic resonance imaging, provided specific findings for the diagnosis.

    Recurrence of neovascular age-related macular degeneration after cessation of treat and extend regimen

    Get PDF
    The appropriate timing of treatment cessation after treat and extend (TAE) regimen for age-related macular degeneration has not been established. This study aimed to investigate the incidence and risk factors of recurrence after cessation of the TAE regimen. We included patients who received and discontinued the TAE regimen, after extension of the treatment interval to ≥ 12 weeks. Forty-nine patients were included in the study. The estimated recurrence rates were 33% at 1 year and 48% at 2 years after treatment cessation, respectively. Good visual acuity at cessation and a large number of injections in the 6 months before cessation were significant risk factors. Higher chances of recurrence were associated with < 0.1 logarithm of the minimum angle of resolution (logMAR) at cessation (P < 0.002). Meanwhile, five patients with visual acuity ≥ 1.0 logMAR at cessation did not show recurrence. Among the 25 recurrences, two lines of vision loss were noted in only two cases after resumed treatment. This study confirmed the importance of the number of injections in reducing recurrence and the association between visual acuity and recurrence. Recurrence is generally well-controlled with resumed treatment

    Novel Model of Pulmonary Artery Banding Leading to Right Heart Failure in Rats

    Get PDF
    Background. Congenital heart diseases often involve chronic pressure overload of the right ventricle (RV) which is a major cause of RV dysfunction. Pulmonary artery (PA) banding has been used to produce animal models of RV dysfunction. We have devised a new and easier method of constricting the PA and compared it directly with the partial ligation method. Methods. Eight-week-old male Sprague-Dawley rats (240–260 g) were divided into three groups: sham operation, partial pulmonary artery ligation (PAL) procedure, and pulmonary artery half-closed clip (PAC) procedure. RV function and remodeling were determined by echocardiography and histomorphometry. Results. Surgical mortality was significantly lower in the PAC group while echocardiography revealed significantly more signs of RV dysfunction. At the 8th week after surgery RV fibrosis rate was significantly higher in the PAC group. Conclusions. This procedure of pulmonary artery banding in rats is easier and more efficient than partial ligation

    RUNX inhibitor suppresses graft‐versus‐host disease through targeting RUNX‐NFATC2 axis

    Get PDF
    Patients with refractory graft-versus-host disease (GVHD) have a dismal prognosis. Therefore, novel therapeutic targets are still needed to be identified. Runt-related transcriptional factor (RUNX) family transcription factors are essential transcription factors that mediate the essential roles in effector T cells. However, whether RUNX targeting can suppress, and GVHD is yet unknown. Here, we showed that RUNX family members have a redundant role in directly transactivating NFATC2 expression in T cells. We also found that our novel RUNX inhibitor, Chb-M’, which is the inhibitor that switches off the entire RUNX family by alkylating agent–conjugated pyrrole-imidazole (PI) polyamides, inhibited T-cell receptor mediated T cell proliferation and allogenic T cell response. These were designed to specifically bind to consensus RUNX-binding sequences (TGTGGT). Chb-M’ also suppressed the expression of NFATC2 and pro-inflammatory cytokine genes in vitro. Using xenogeneic GVHD model, mice injected by Chb-M’ showed almost no sign of GVHD. Especially, the CD4 T cell was decreased and GVHD-associated cytokines including tissue necrosis factor-α and granulocyte-macrophage colony-stimulating factor were reduced in the peripheral blood of Chb-M’ injected mice. Taken together, our data demonstrates that RUNX family transcriptionally upregulates NFATC2 in T cells, and RUNX-NFATC2 axis can be a novel therapeutic target against GVHD

    RUNX1 transactivates BCR-ABL1 expression in Philadelphia chromosome positive acute lymphoblastic leukemia

    Get PDF
    The emergence of tyrosine kinase inhibitors as part of a front-line treatment has greatly improved the clinical outcome of the patients with Ph⁺ acute lymphoblastic leukemia (ALL). However, a portion of them still become refractory to the therapy mainly through acquiring mutations in the BCR-ABL1 gene, necessitating a novel strategy to treat tyrosine kinase inhibitor (TKI)-resistant Ph⁺ ALL cases. In this report, we show evidence that RUNX1 transcription factor stringently controls the expression of BCR-ABL1, which can strategically be targeted by our novel RUNX inhibitor, Chb-M'. Through a series of in vitro experiments, we identified that RUNX1 binds to the promoter of BCR and directly transactivates BCR-ABL1 expression in Ph⁺ ALL cell lines. These cells showed significantly reduced expression of BCR-ABL1 with suppressed proliferation upon RUNX1 knockdown. Moreover, treatment with Chb-M' consistently downregulated the expression of BCR-ABL1 in these cells and this drug was highly effective even in an imatinib-resistant Ph⁺ ALL cell line. In good agreement with these findings, forced expression of BCR-ABL1 in these cells conferred relative resistance to Chb-M'. In addition, in vivo experiments with the Ph⁺ ALL patient-derived xenograft cells showed similar results. In summary, targeting RUNX1 therapeutically in Ph⁺ ALL cells may lead to overcoming TKI resistance through the transcriptional regulation of BCR-ABL1. Chb-M' could be a novel drug for patients with TKI-resistant refractory Ph⁺ ALL
    corecore