29 research outputs found

    Acute osteomyelitis of the acetabulum induced by Staphylococcus capitis in a young athlete

    Get PDF
    Acute hematogenous osteomyelitis (AHOM) of the acetabulum is a rare condition in children and usually caused by Staphylococcus aureus. We present an 11-year-old soccer athlete who suffered from acute osteomyelitis involving the acetabulum caused by S. capitis, a normal flora of the human skin but never reported in this condition. The disease was associated with repetitive skin injuries of the knee and potential osseous microtrauma of the hip joint by frequent rigorous exercise. This unusual case suggests that osseous microtrauma of the acetabulum, in addition to repetitive skin injuries, allowed normal skin flora to colonize to the ipsilateral acetabulum, which served as a favorable niche and subsequently led to AHOM

    Use of bisphosphonates for the treatment of stress fractures in athletes

    Get PDF
    金沢大学附属病院整形外科A literature review was performed to investigate the potential role of bisphosphonates for the treatment of stress fractures in athletes. Given the inhibitory action on osteoclast-mediated bone resorption, short-term suppression of bone remodeling using bisphosphonates could potentially treat stress fractures and prevent stress fractures from becoming regular fractures. To date, while there are some animal studies showing the scientific basis of bisphosphonates on stress fractures, there is still no conclusive evidence to prove any effect of bisphosphonates on stress fracture healing in humans. Further well-designed clinical trials should be carried out to establish their usefulness and safety. Until the results are available, it is prudent to limit the use of bisphosphonates for the treatment of stress fractures. © 2008 Springer-Verlag.

    A new ferromagnetic thiospinel CuCrZrS4 with re-entrant spin-glass behaviour

    Get PDF
    A new thiospinel CuCrZrS4 has been successfully synthesized by a solid-state chemical reaction. This CuCrZrS4 exhibits ferromagnetic properties below the Curie temperature at Tc=60±2 K. The appearance of irreversible effect between field-cooled and zero-field-cooled magnetization is prominent below around 5 K in a magnetic field of less than 150 Oe. The ac susceptibility χAC shows a rapid decrease below about 10 K. This low magnetic-field behaviour indicates the existence of a re-entrant spin-glass phase below about 10 K. The dc magnetic susceptibility above 100 K shows Curie-Weiss behaviour with an effective magnetic moment of 3.61 μB, which is a little less than the spin-only value of 3.87 μB for the Cr3+ ion. The asymptotic Curie temperature &thetas;p is approximately 65 K, which is a little higher than Tc. The valence state is confirmed to be Cu+Cr3+Zr4+S42- on the basis of magnetic properties. The electrical resistivity ρ shows a semiconducting temperature dependence over the temperature range from 4.2 to 280 K with an activation energy of 6.84×10-3 eV in the higher temperature range from 50 to 283

    Randomized phase II study to determine the optimal dose of 3-week cycle nab-paclitaxel in patients with metastatic breast cancer

    Get PDF
    Background Chemotherapy-induced peripheral neuropathy is commonly observed in patients treated with nanoparticle albumin–bound paclitaxel (nab-PTX). We conducted a multicenter randomized controlled study to evaluate the optimal dose of nab-PTX. Methods We compared three different doses of q3w nab-PTX (Standard: 260 mg/m2 [SD260] vs Medium: 220 mg/m2 [MD220] vs Low: 180 mg/m2 [LD180]) in patients with HER2-negative metastatic breast cancer (MBC). Primary endpoint was progression-free survival (PFS). Grade 3/4 neuropathy rates in the three doses were estimated using the logistic regression model. The optimal dose was selected in two steps. Initially, if the hazard ratio (HR) for PFS was 1.33, the inferior dose was excluded, and we proceeded with the non-inferior dose. Then, if the estimated incidence rate of grade 3/4 neurotoxicity exceeded 10%, that dose was also excluded. Results One hundred forty-one patients were randomly assigned to SD260 (n = 47), MD220 (n = 46), and LD180 (n = 48) groups, and their median PFS was 6.66, 7.34, and 6.82 months, respectively. The HRs were 0.73 (95% confidence interval [CI]: 0.42–1.28) in MD220 vs SD260, 0.77 (95% CI 0.47–1.28) in LD180 vs SD260, and 0.96 (95% CI 0.56–1.66) in LD180 vs MD220. SD260 was inferior to MD220 and was excluded. The estimated incidence rate of grade 3/4 neurotoxicity was 29.5% in SD260, 14.0% in MD220, and 5.9% in LD180. The final selected dose was LD180. Conclusions Intravenous administration of low-dose nab-PTX at 180 mg/m2 q3w may be the optimal therapy with meaningful efficacy and favorable toxicity in patients with MBC

    Association of Genetic Polymorphism with Taxane-induced Peripheral Neuropathy: Sub-analysis of a Randomized Phase II Study to Determine the Optimal Dose of 3-week Cycle Nab-Paclitaxel in Metastatic Breast Cancer Patients

    Get PDF
    Chemotherapy-induced peripheral neuropathy (CIPN) is an important clinical challenge that threatens patients’ quality of life. This sub-study of the ABROAD trial investigated the influence of single nucleotide polymorphisms (SNPs) on CIPN, using genotype data from a randomized study to determine the optimal dose of a 3-week-cycle regimen of nab-paclitaxel (q3w nab-PTX) in patients with metastatic breast cancer (MBC). Patients with HER2-negative MBC were randomly assigned to three doses of q3w nab-PTX (SD: 260 mg/m2 vs. MD: 220 mg/m2 vs. LD: 180 mg/m2). Five SNPs (EPHA4-rs17348202, EPHA5-rs7349683, EPHA6-rs301927, LIMK2-rs5749248, and XKR4-rs4737264) were analyzed based on the results of a previous genome-wide association study. Per-allele SNP associations were assessed by a Cox regression to model the cumulative dose of nab-PTX up to the onset of severe or worsening sensory neuropathy. A total of 141 patients were enrolled in the parent study; 91(65%) were included in this sub-study. Worsening of CIPN was significantly greater in the cases with XKR4 AC compared to those with a homozygote AA (HR 1.86, 95%CI: 1.00001−3.46, p=0.049). There was no significant correlation of CIPN with any other SNP. A multivariate analysis showed that the cumulative dose of nab-PTX was most strongly correlated with CIPN (p<0.01)

    Magnetized Fast Isochoric Laser Heating for Efficient Creation of Ultra-High-Energy-Density States

    Full text link
    The quest for the inertial confinement fusion (ICF) ignition is a grand challenge, as exemplified by extraordinary large laser facilities. Fast isochoric heating of a pre-compressed plasma core with a high-intensity short-pulse laser is an attractive and alternative approach to create ultra-high-energy-density states like those found in ICF ignition sparks. This avoids the ignition quench caused by the hot spark mixing with the surrounding cold fuel, which is the crucial problem of the currently pursued ignition scheme. High-intensity lasers efficiently produce relativistic electron beams (REB). A part of the REB kinetic energy is deposited in the core, and then the heated region becomes the hot spark to trigger the ignition. However, only a small portion of the REB collides with the core because of its large divergence. Here we have demonstrated enhanced laser-to-core energy coupling with the magnetized fast isochoric heating. The method employs a kilo-tesla-level magnetic field that is applied to the transport region from the REB generation point to the core which results in guiding the REB along the magnetic field lines to the core. 7.7 ±\pm 1.3 % of the maximum coupling was achieved even with a relatively small radial area density core (ρR\rho R \sim 0.1 g/cm2^2). The guided REB transport was clearly visualized in a pre-compressed core by using Cu-KαK_\alpha imaging technique. A simplified model coupled with the comprehensive diagnostics yields 6.2\% of the coupling that agrees fairly with the measured coupling. This model also reveals that an ignition-scale areal density core (ρR\rho R \sim 0.4 g/cm2^2) leads to much higher laser-to-core coupling (>> 15%), this is much higher than that achieved by the current scheme

    Clinical application of scaffolds for cartilage tissue engineering

    Get PDF
    The purpose of this paper is to review the basic science and clinical literature on scaffolds clinically available for the treatment of articular cartilage injuries. The use of tissue-engineered grafts based on scaffolds seems to be as effective as conventional ACI clinically. However, there is limited evidence that scaffold techniques result in homogeneous distribution of cells. Similarly, few studies exist on the maintenance of the chondrocyte phenotype in scaffolds. Both of which would be potential advantages over the first generation ACI. The mean clinical score in all of the clinical literature on scaffold techniques significantly improved compared with preoperative values. More than 80% of patients had an excellent or good outcome. None of the short- or mid-term clinical and histological results of these tissue-engineering techniques with scaffolds were reported to be better than conventional ACI. However, some studies suggest that these methods may reduce surgical time, morbidity, and risks of periosteal hypertrophy and post-operative adhesions. Based on the available literature, we were not able to rank the scaffolds available for clinical use. Firm recommendations on which cartilage repair procedure is to be preferred is currently not known on the basis of these studies. Randomized clinical trials and longer follow-up periods are needed for more widespread information regarding the clinical effectiveness of scaffold-based, tissue-engineered cartilage repair

    In Situ Observation of a Self-Assembled Monolayer Formation of Octadecyltrimethoxysilane on a Silicon Oxide Surface Using a High-Speed Atomic Force Microscope

    Get PDF
    The formation mechanism of a self-assembled monolayer (SAM) of octadecyltrimethoxysilane on a silicon oxide surface in reaction is studied in situ by using a high-speed atomic force microscope that has a time resolution of 2 s per frame. The SAM formation of a silane coupling reagent on silicon is known to comprise three development stages of nucleation, growth, and coalescence. In the present study, the first nucleation stage is found to have dynamical processes: a molecular cluster attached to the substrate works as a reaction base, on which additional reactive molecules are in a bind/unbind equilibrium. In this time period, the cluster needs a long time to develop in diameter. Once a domain of ca. 30 nm in diameter is formed, the reaction rate is changed, which is dominated by the rim length of the domain. This implies that the weakly adsorbing limit approximation on the substrate surface can be employed. Another important point is that the molecular domains generate a SAM like an occupied sheet of tiles, and each tile is connected to the substrate by a few feet. In fact, a molecular tile can easily be removed by applying soft air plasma leaving the rest of the tiles of highly packed molecules, which is confirmed by infrared p-polarized external reflection spectroscopy
    corecore