320 research outputs found

    Isolation and Identification of a Senescence-promoting Substance from Wormwood ( Artemisia absinthium

    Full text link

    Trans-Bilayer Ion Conduction by Proline Containing Cyclic Hexapeptides and Effects of Amino Acid Substitutions on Ion Conducting Properties

    Get PDF
    Several ion channel forming cyclic peptides have been reported over the past two decades and various ion conducting mechanisms have been proposed. In this article, we report on amino acid substitutions in cyclic hexapeptides and their effects on the ion conducting properties of these peptides. Cyclic hexapeptides, cyclo(Pro-Xxx-Yyy)2, containing two Pro residues, were used as the main framework. The substitution is performed at the Xxx positions with cationic/hydrophilic Lys or hydrophobic Leu. Yyy positions were substituted with D-Phe, D-Ala, or Gly. The peptides which were absent Lys residues showed ion conducting profiles with clear transitions of electric currents, whereas the peptides containing Lys residues tended to exhibit spiky or burst-like profiles. These profiles were altered single state profiles by the protection of ε-amino groups with aromatic protecting groups. The protected analogs exhibited significant decrease in ion conductance. These results indicated that peptides containing Lys conduct ions without forming ring stacked tube-like structure. Ion channel properties were also affected by conformational changes of the cyclic peptides induced by substitution of the Yyy positions. Enhancement of intramolecular β-turn structures of cyclic peptides tended to decrease their ion conductance values

    Dehydrocostus lactone, a naturally occurring polar auxin transport inhibitor, inhibits epicotyl growth by interacting with auxin in etiolated Pisum sativum seedlings

    Get PDF
    We have isolated germacranolide-type sesquiterpene lactones with an α-methylene-γ-lactone moiety, dehydrocostus lactone (DHCL), costunolide, santamarine, and a novel compound denoted artabolide [3-hydroxy-4,6,7(H)-germacra-1(10),11(13)-dien-6,12-olide] from oriental medicinal Asteraceae plants as novel naturally occurring inhibitors of polar auxin transport detected by the radish hypocotyl bioassay. To investigate the mode of action of natural sesquiterpene lactones on the inhibition of polar auxin transport as well as its relation to the growth of seedlings, the function of DHCL on growth and auxin dynamics in etiolated pea seedlings was studied intensively. DHCL reduced polar auxin transport in a dose-dependent manner together with the inhibition of the accumulation of mRNA of PsAUX1 and PsPIN1 genes encoding influx and efflux carrier proteins of auxin, respectively. DHCL applied to the apical hook region as a lanolin paste substantially inhibited elongation growth in the subapical region of epicotyls in intact etiolated pea seedlings, coupled with a significant reduction of endogenous levels of indole-3-acetic acid (IAA). DHCL also revealed the inhibition of IAA-induced cell elongation in etiolated pea epicotyl segments by affecting IAA-induced changes in the mechanical properties of cell walls. These facts suggest that germacranolide-type sesquiterpene lactones with an α-methylene-γ-lactone moiety affect the expression of PsAUX1 and PsPINs genes, and then inhibit polar auxin transport and reduce endogenous levels of IAA necessary for stem growth in etiolated pea seedlings. These compounds are also suggested to show the inhibitory effects on auxin action in pea stem growth

    Methyl Jasmonate Induces Gummosis in Plants

    Get PDF
    Gum in plants is induced by environmental stress factors such as pathogens infection, insect attack, mechanical and chemical injuries, water stress and others. All these factors are considered to act via ethylene produced in plant tissues. Recently we have also shown that jasmonates, a new group of plant hormones, induced gummosis in tulip, peach, apricot, plum and cherry. This review paper describes physiological roles of jasmonates in gum induction and/or production in these plants and chemical compositions of gums. A possible mode of action of jasmonates in the process of gummosis will also be discussed in point of the interaction with ethylene
    corecore