76 research outputs found

    Аванпроект ближньомагістрального пасажирського літака пасажиромістківстю 68 пасажирів

    Get PDF
    Робота публікується згідно наказу Ректора НАУ від 27.05.2021 р. №311/од "Про розміщення кваліфікаційних робіт здобувачів вищої освіти в репозиторії університету". Керівник роботи: професор, д.т.н. Карускевич Михайло ВіталійовичThis bachelor thesis is dedicated to the design of short-range passenger aircraft with 68 passenger capacity and its design characteristics. The methods of design are analysis of the advanced prototypes and selections of the most efficient technical decisions for application in new aircraft design. The design approach is to analyze advanced prototypes and borrow its advanced characteristics and geometric date for the new aircraft design.Ця бакалаврська робота присвячена конструкції пасажирського літака малої дальності на 68 пасажирів та його конструктивним характеристикам. Методами проектування є аналіз передових прототипів і вибір найбільш ефективних технічних рішень для застосування в нових конструкціях літаків. Підхід до проектування полягає в тому, щоб проаналізувати передові прототипи та запозичити його передові характеристики та геометричну дату для нового дизайну літака

    A novel gaussian particle swarms optimized particle filter algorithm for the state of charge estimation of lithium-ion batteries.

    Get PDF
    A gaussian particle swarm optimized particle filter estimation method, along with the second-order resistance-capacitance model, is proposed for the state of charge estimation of lithium-ion battery in electric vehicles. Based on the particle filter method, it exploits the strong optimality-seeking ability of the particle swarm algorithm, suppressing algorithm degradation and particle impoverishment by improving the importance distribution. This method also introduces normally distributed decay inertia weights to enhance the global search capability of the particle swarm optimization algorithm, which improves the convergence of this estimation method. As can be known from the experimental results that the proposed method has stronger robustness and higher filter efficiency with the estimation error steadily maintained within 0.89% in the constant current discharge experiment. This method is insensitive to the initial amount and distribution of particles, achieving adaptive and stable tracking in the state of charge for lithium-ion batteries

    A novel autoregressive rainflow-integrated moving average modeling method for the accurate state of health prediction of lithium-ion batteries.

    Get PDF
    The accurate estimation and prediction of lithium-ion battery state of health are one of the important core technologies of the battery management system, and are also the key to extending battery life. However, it is difficult to track state of health in real-time to predict and improve accuracy. This article selects the ternary lithium-ion battery as the research object. Based on the cycle method and data-driven idea, the improved rain flow counting algorithm is combined with the autoregressive integrated moving average model prediction model to propose a new prediction for the battery state of health method. Experiments are carried out with dynamic stress test and cycle conditions, and a confidence interval method is proposed to fit the error range. Compared with the actual value, the method proposed in this paper has a maximum error of 5.3160% under dynamic stress test conditions, a maximum error of 5.4517% when the state of charge of the cyclic conditions is used as a sample, and a maximum error of 0.7949% when the state of health under cyclic conditions is used as a sample

    A novel adaptive function-dual Kalman filtering strategy for online battery model parameters and state of charge co-estimation.

    Get PDF
    This paper aims to improve the stability and robustness of the state-of-charge estimation algorithm for lithium-ion batteries. A new internal resistance-polarization circuit model is constructed on the basis of the Thevenin equivalent circuit to characterize the difference in internal resistance between charge and discharge. The extended Kalman filter is improved through adding an adaptive noise tracking algorithm and the Kalman gain in the unscented Kalman filter algorithm is improved by introducing a dynamic equation. In addition, for benignization of outliers of the two above mentioned algorithms, a new dual Kalman algorithm is proposed in this paper by adding a transfer function and through weighted mutation. The model and algorithm accuracy is verified through working condition experiments. The result shows that: the errors of the three algorithms are all maintained within 0.8% during the initial period and middle stages of the discharge; the maximum error of the improved extension of Kalman algorithm is over 1.5%, that of improved unscented Kalman increases to 5%, and the error of the new dual Kalman algorithm is still within 0.4% during the latter period of the discharge. This indicates that the accuracy and robustness of the new dual Kalman algorithm is better than those of traditional algorithm

    An improved rainflow algorithm combined with linear criterion for the accurate li-ion battery residual life prediction.

    Get PDF
    Li-ion battery health assessment has been widely used in electric vehicles, unmanned aerial vehicle and other fields. In this paper, a new linear prediction method is proposed. By weakening the sensitivity of the Rainflow algorithm to the peak data, it can be applied to the field of battery, and can accurately count the number of Li-ion battery cycles, and skip the cumbersome link of parameter identification. Then, a linear criterion is proposed based on the idea of proportion, which makes the life prediction of Li-ion battery linear. Under the verification of multiple sets of data, the prediction error of this method is kept within 2.53%. This method has the advantages of high operation efficiency and simple operation, which provides a new idea for battery life prediction in the field of electric vehicles and aerospace

    Optimization and validation of the protocol used to analyze the taste of traditional Chinese medicines using an electronic tongue

    Get PDF
    Tools to define the active ingredients and flavors of Traditional Chinese Medicines (TCMs) are limited by long analysis times, complex sample preparation and a lack of multiplexed analysis. The aim of the present study was to optimize and validate an electronic tongue (E‑tongue) methodology to analyze the bitterness of TCMs. To test the protocol, 35 different TCM concoctions were measured using an E‑tongue, and seven replicate measurements of each sample were taken to evaluate reproducibility and precision. E‑tongue sensor information was identified and classified using analysis approaches including least squares support vector machine (LS‑SVM), support vector machine (SVM), discriminant analysis (DA) and partial least squares (PLS). A benefit of this analytical protocol was that the analysis of a single sample took \u3c15 min for all seven sensors. The results identified that the LS‑SVM approach provided the best bitterness classification accuracy (binary classification accuracy, 100%; ternary classification accuracy, 89.66%). The E‑tongue protocol developed showed good reproducibility and high precision within a 6 h measurement cycle. To the best of our knowledge, this is the first study of an E‑tongue being applied to assay the bitterness of TCMs. This approach could be applied in the classification of the taste of TCMs, and serve important roles in other fields, including foods and beverages

    Keyframe image processing of semantic 3D point clouds based on deep learning

    Get PDF
    With the rapid development of web technologies and the popularity of smartphones, users are uploading and sharing a large number of images every day. Therefore, it is a very important issue nowadays to enable users to discover exactly the information they need in the vast amount of data and to make it possible to integrate their large amount of image material efficiently. However, traditional content-based image retrieval techniques are based on images, and there is a “semantic gap” between this and people's understanding of images. To address this “semantic gap,” a keyframe image processing method for 3D point clouds is proposed, and based on this, a U-Net-based binary data stream semantic segmentation network is established for keyframe image processing of 3D point clouds in combination with deep learning techniques

    Spatio-temporal interactive fusion based visual object tracking method

    Get PDF
    Visual object tracking tasks often struggle with utilizing inter-frame correlation information and handling challenges like local occlusion, deformations, and background interference. To address these issues, this paper proposes a spatio-temporal interactive fusion (STIF) based visual object tracking method. The goal is to fully utilize spatio-temporal background information, enhance feature representation for object recognition, improve tracking accuracy, adapt to object changes, and reduce model drift. The proposed method incorporates feature-enhanced networks in both temporal and spatial dimensions. It leverages spatio-temporal background information to extract salient features that contribute to improved object recognition and tracking accuracy. Additionally, the model’s adaptability to object changes is enhanced, and model drift is minimized. A spatio-temporal interactive fusion network is employed to learn a similarity metric between the memory frame and the query frame by utilizing feature enhancement. This fusion network effectively filters out stronger feature representations through the interactive fusion of information. The proposed tracking method is evaluated on four challenging public datasets. The results demonstrate that the method achieves state-of-the-art (SOTA) performance and significantly improves tracking accuracy in complex scenarios affected by local occlusion, deformations, and background interference. Finally, the method achieves a remarkable success rate of 78.8% on TrackingNet, a large-scale tracking dataset
    corecore