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With the rapid development of web technologies and the popularity of

smartphones, users are uploading and sharing a large number of images every

day. Therefore, it is a very important issue nowadays to enable users to discover

exactly the information they need in the vast amount of data and to make it

possible to integrate their large amount of image material e�ciently. However,

traditional content-based image retrieval techniques are based on images, and

there is a “semantic gap” between this and people’s understanding of images.

To address this “semantic gap,” a keyframe image processing method for 3D

point clouds is proposed, and based on this, a U-Net-based binary data stream

semantic segmentation network is established for keyframe image processing

of 3D point clouds in combination with deep learning techniques.
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Introduction

In recent years, computer vision technology, deep learning technology, and related

intelligent equipment have been developed rapidly, and many scholars and researchers

have conducted in-depth research on them. Among them, the semantic understanding

of scene images can well combine the above three aspects and can become a current hot

spot, especially the easier access to deep data has made the related research more active.

Solving the problem of semantic understanding of scenes essentially means using the

location and feature relationship of pixel points to segment, cluster, and recognize pixels,

using mathematical theories and methods to process pixel data, adding human language

expressions and descriptions to pixel data, and thus realizing the intelligence of machines

and the understanding of reality (Li, 2022a).

Traditional intelligent devices such as unmanned vehicles and robots usually rely on

two-dimensional (2D) vision with one or two eyes to accomplish semantic recognition

of scenes, and current methods have achieved good results; however, there are still some

problems with target semantic recognition based on 2D color images: the correctness

of image recognition depends mainly on the quality of the acquired images, such

as changes in camera parameters, ambient lighting changes (especially at night) can

greatly affect the final recognition, and three-dimensional (3D) point clouds can

solve this problem well because of the depth information collected (Li et al., 2021a);
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therefore, the combination of 2D and 3D is receiving

more attention.

Vision is the most important and fundamental human

behavior, with over 75% of external information relying on

vision. If robots could be made to have the same vision as

humans, some complex and high-risk tasks would be used to

assist or replace them. From a bionic perspective, the use of

cameras instead of the human eye for visualization is both the

most scientific and practical means of doing so and the most

effective (Li et al., 2021b).

The integration of optoelectronics, computer image

processing, image processing, signal processing, and other

science and technologies into the modern measurement

technology is the product of twentieth-century technology

development (Li, 2022b). It is in the industrial automatic

detection, product quality control, reverse design, biomedicine,

virtual reality, cultural relics restoration, human body

measurement, and many other aspects have a wide range

of applications.

The United States, Germany, Japan, and other advanced

countries in the 3D measurement technology started earlier,

since the end of the last century has a large number of theories

and methods (Chen et al., 2008). In recent years, in order

to adapt to the trend of digital, fast-response production,

the life of the product is becoming shorter, the 3D model

constructed and applied in many fields is becoming more fine

and complex, and people’s requirements for the product are

becoming higher; therefore, in terms of measurement accuracy,

stability, and industrial design, more attention is being paid

to advanced foreign technology. In addition, the current 3D

measurement technology has many shortcomings, especially

on complex curved surfaces, where the material needs to be

measured, and the level of adaptiveness and automation of

the object’s form factor is not high, so there are still many

problems to be solved in practical applications. Therefore, this

article focuses on the semantic understanding of keyframe

images in 3D point cloud scenes, using deep learning techniques

to combine 2D information with 3D depth information to

investigate the semantic understanding of keyframe images in

3D point cloud scenes.

Introduction to related technologies

Deep learning

Deep learning is a comprehensive approach to model

analysis that includes three different methods.

1. A network based on convolutional operations, called CNN

(Cycle Network).

2. A self-coding neural network based on multilevel neurons,

which incorporates two new coding methods, namely,

autoencoder and sparse coding.

3. A multilevel self-coding neural network is used to pretrain

the neural network, and the recognition information is

combined with a deep trusted network to further optimize

the neural network weights (He et al., 2002;Wang et al., 2002;

Qie, 2010; Li et al., 2011).

After multilevel processing, the “low-level” feature

representation is gradually transformed into a “high-level”

feature representation, and then the “simple model” is used

to perform complex classification and other learning tasks.

Thus, deep learning can be understood as “feature learning” or

“representation learning” (Peng et al., 2004).

In the past, the application of machine learning to practical

work often required a specialist to characterize a sample,

which led to “feature engineering.” It is well known that the

quality of features is directly related to the performance of

generalization, and it is not easy for human professionals

to design good features; feature learning (feature learning)

uses machine learning techniques themselves to generate good

features, allowing machine learning to move further toward

“unmanned data analysis” (Wan and Morshed).

In recent years, researchers have been gradually integrating

these approaches, for example, by combining supervised

learning-based convolutional neural networks with self-coding

neural networks to form convolutional deep convolutional

inverse (CI) networks by adjusting the parameters of the

network with discriminative information without supervision.

The deep learning approach is difficult to train due to the large

number of model parameters required, while the general rule of

statistical learning shows that as the model parameters increase,

the training data required also increase (Lou, 2004).

In the 1980 and 1990s, the constraints of computer

computing power and the level of technology that allowed

for large amounts of data analysis prevented deep learning

from being effective for pattern analysis. Restricted Boltzmann

machines (RBM) became a powerful tool for enhancing the

depth of neural networks after Hinton et al. proposed a fast

CD-K-based method for computing the weights and biases of

Boltzmann machine (RBM) networks, which led to the later

mass application of deep belief networks (DBNs) (as developed

by Hinton et al. and already used in speech recognition by

companies such asMicrosoft). At the same time, techniques such

as sparse coding allow for the automatic extraction of data in

deep learning. In recent years, convolutional neural networks

based on local data have also been widely used (Zhang et al.,

2017).

Point cloud processing methods

The 3D digital image information obtained through 3D

measurement devices is dominated by spatially discrete 3D point

coordinate information. To obtain complete and accurate point
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cloud data, a large amount of 3D data needs to be processed

before later surface reconstructionmodeling is carried out (Song

et al., 2017).

Point cloud processing includes topological reconstruction,

point cloud denoising, point cloud smoothing, point cloud

sampling, point cloud sorting, point cloud merging, point cloud

encryption, and triangular meshing (Litany et al., 2017).

Point cloud noise reduction

Due to the influence of measurement equipment and other

factors, there is inevitably some noise in the measurement data,

resulting in a “rough burr” in the 3D display of the point

cloud data. Noise has a significant impact on the modeling of

the model.

If no noise is removed, the final object constructed will differ

significantly from the real object due to the presence of noise

points. Therefore, the first thing to do before processing the

point cloud data is to denoise it (Lin, 2014).

Optimisation of point clouds

A simplified algorithm for point clouds is outlined in

the paper by M. Pauly et al. (Feng, 2015). They are the

basis for most current simplification algorithms. In this

article, the simplification methods for point clouds are

divided into three categories, namely, clustering, iteration, and

granular simulation.

Aggregation

Clustering is a common method for computing complex

objects in three dimensions. The basic idea of clustering is

partitioning. There are two main types, namely, bulk (envelope

box) and planar partitioning. Bulk partitioning does not take the

sampling density of the point cloud into account but allows for

a good fusion of multiple envelopes, whereas the opposite is true

for planar partitioning. An example of the clustering method is

shown in Figure 1.

Iterative method

As shown in Figure 2, this iteration is very similar to the

simplification of asymptotic meshes. In simplifying the mesh,

the vertices of each mesh were first assigned an error and then

moved from small to large. The vertices are simplified, then each

vertex is recalculated, and the vertices are removed to a tolerable

range (Silberman and Fergus, 2011). This point iterationmethod

makes the sampled point cloud only a subset of the original point

cloud, and the results are not ideal. The error of a point is derived

as a real symmetric matrix Q from one of the endpoints at which

the point and its neighboring edges are located, such that the

error of a point pair (edge) can be expressed as Qv = Qv1 +

Qv2.

Particle simulation

Particle simulation is a method of sampling polygonal

surfaces. Since the sampling points are taken on polygonal

planes, the accuracy of the sampling is related to the area of

the polygonal surface. Turk also uses a curvature estimation

method, which allows the sample density to vary with curvature.

The sampling of polygons is achieved by triangulating the

sampling points. It is clear that the above point cloud resampling

method is also feasible. The point cloud data can be replaced

with points and their neighbors, and the area of the polygon

surface corresponds to the neighboring area of the point cloud.

An example of its particle replica is shown in Figure 3.

From the above three methods for comparison, because the

method proposed in this article is based on deep learning to

conduct research, clustering and particle simulation are not too

suitable for training performance improvement, so this article

chooses the iterative method to simplify the point cloud.

Application method design

Method of generating semantic point
clouds for keyframes

This part obtains point cloud semantic data by semantically

dividing the point cloud data through the coordinate

transformation relationship between the point cloud data

and the depth map. The flowchart for generating keyframe

semantic point clouds is shown in Figure 4.

Several data types commonly used in point cloud data are

XYZ and XYZRGB. To make the semantic information better

presented, we selected the XYZRGB data type, divided the

different semantic categories into RGB species standards, and

visualized the semantic classes by their corresponding semantic

information to RGB channels.

As shown in Figure 4, in order to generate semantic point

clouds, first, Point x(w, yw, zw) in the point cloud data is

transformed into each pointDepth (u, v), and finally, the 3D data

are transformed into 2D image depth; on this basis, each pixel P

(u, v) of the depth map is transformed into semantic point cloud

data points, semantic point cloud data points Point (x w, yw,,

zw, rw, gw, bw), and finally the key frame semantic point cloud

(Hinton, 2006).

Dual data stream semantic segmentation
network design

To make full use of RGB and depth information, the impact

of the image on the process of semantic understanding by

factors such as changes in camera parameters and uncontrollable

indoor lighting is reduced, and the problems of image data

such as occlusion, incomplete data, disorder, difficulty in feature

extraction, a large amount of data, large changes in scene type,
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FIGURE 1

Clustering method instance.

FIGURE 2

Iterative method instance.
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FIGURE 3

An example of simulation of particle.

FIGURE 4

Flowchart for generating a semantic point cloud of keyframes.

and unclear background are reduced, thus reducing the impact

on semantic understanding (Yu et al., 2013).

The diagram of the U-Net-based dual data stream semantic

segmentation network model is shown in Figure 5, which is

divided into three parts, namely, RGB data stream training

channel, depth data stream training channel, and contribution

decision layer. When RGB and depth data stream training are

two separate systems that do not intersect with each other, the

system uses the optimal U-Net network structure as described

in the previous section to ensure the effectiveness of individual

feature learning while preventing false interference with each

other. Based on this, the abstract segmentation properties of

both RGB and depth images are combined to form a weighted

array of thresholds that measure the role of RGB and depth at

individual pixel points, thus enabling semantic segmentation of

the target (Lu and Zhang, 2016).
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FIGURE 5

U-Net-based semantic segmentation network for dual data streams.

The optimal U-Net network structure was used in order to

make output probability profiles for RGB and depth data streams

with K representing the classification number, h representing

the height of the segmented image, and w representing the

width of the segmented image. The contribution rate trade-off

predictions are shown in Figure 6.

The use of U-Net technology achieves a direct combination

of RGB and depth data, eliminating the original errors

that exist between RGB and depth data, eliminating the

interaction between RGB and depth information, and achieving

a complementary advantage of the two.

The U-Net is a variation of a fully convolutional neural

network similar to the one whose structure was drawn by the

authors as a U. The network consists of two main classes,

namely, search paths and extension paths. The search path

is mainly used to obtain the background information in the

image, while the symmetric extension path is used to precisely

determine the regions in the image.

The U-Net is improved from fully convolutional networks

(FCN), which does not encode and code the image as FCN

does. For accurate localization, U-Net combines image features

extracted from compressed paths with a new feature map (in

more general terms, it fuses local and overall information

to improve the prediction accuracy of object prime point

classification). To allow the network to work more efficiently,

it does not have a full connectivity layer, which allows for a

significant reduction in the parameters required for training and

also allows for the preservation of all information in the image

through a unique U-shaped structure.

In the compression path, every two 3 × 3 convolutional

layers (the largest 2 layers) are combined with the largest 2 ×

2 sinks (2), and a relu start function is used after each layer to

reduce the sampling of the original image, in addition to adding

a cup of channels for each down-sampling.

For up-sampling, each step has 2 × 2 convolutional layers

(the activation function is also relu) and two 3× 3 convolutional

layers, while a feature map (cut to the same shape) is added from

the relative compressed path for each up-sampling step.

The method converts the feature vector of 64 channels into

the desired number (e.g., 2) and, finally, the whole network of

U-Net has 23 convolutional layers. The best feature of U-Net is

its ability to convolve images of any size, especially for images of

any size.

Image processing

Removing image noise

Before noisy images can be processed, two issues must be

clarified, namely, the type of noise interference suffered and

the degree of noise interference suffered. This method not

only overcomes the blindness of traditional methods but also

provides some guidance for the research on adaptive image

noise reduction methods. In Figure 7, the correct noise removal

process is shown.

Filtering of image noise requires the filters used to remove

the noise while maintaining as much detail as possible. Image

noise can be divided into two types. The first type is electronic

noise, a noise caused by the random thermal movement of

electrons in resistive elements, which is usually modeled using

zero-mean Gaussian white noise, a method with a histogram of

Gaussian functions and a flat power spectrum. The second type

is particulate noise (pepper noise) due to improper exposure of

the photographic plate.

The image is the first wavelet decomposed using wavelets to

obtain the high-frequency coefficients HH of the noisy image,

and its energy concentration is analyzed to finally determine if

the image has Gaussian noise or pepper noise.
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FIGURE 6

Contribution trade-o� prediction process diagram.

FIGURE 7

The flowchart of image denoising.

FIGURE 8

Outline of the figure.

Noise removal has the following steps.

1. Compare the starting part of the computed wavelet with the

initial data.

2. Obtain a factor of C. This factor represents the similarity of

this type of information to the wavelet and increases as the

correlation coefficient increases.

3. Move the wavelet to the next bit and repeat step 1 and step 2

until all the original data are completely covered.

4. Release the wavelets and repeat steps 1, 2, and 3.

5. Threshold filter all the resulting subwave coefficients.

6. Obtain the image information after noise using subwave

synthesis of the filtered coefficients.

Remove the background of the image

When acquiring a target image, it is inevitable that

information other than the target will be captured, the so-

called background information. Not only is the background

information of no practical value when acquiring point cloud

3D data, but it also generates noise, which affects the synthesis

of the point cloud. It is, therefore, necessary to remove the

background before point cloud synthesis can be performed, and

the key to removing the background is to find the contours

of the target itself. The contours are searched based on edge

extraction techniques.

Image edge check detection and
extraction

Edge extraction is a fundamental technique in current image

analysis and is the first step in the analysis and understanding of

an image.
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FIGURE 9

Remove the background.

Themethod uses information about the extremes of the first-

order differentiation of the image and the per-zero points of the

quadratic differentiation to perform edge extraction. Specifically,

when the change in the image is slow, the gray scale of its

neighboring pixels does not change greatly and, therefore, its

gradient magnitude is small (close to zero), while at the edges

of the image, the location of the edges can be obtained using

the magnitude of the primary differentiation magnitude as the

gray scale of the neighboring pixels changes greatly. Similarly,

the sign of the second-order derivative can be used to determine

whether the edge of a pixel is the bright side or the dark side,

while the zero point is the edge.

The first-order differential boundary operators include the

Robert operator, Sobel operator, Prewitt operator, and Creech

operator, while the Laplace operator andGauss-Laplace operator

are the second-order differential boundary operators.

In this article, the Canny boundary detection method based

on the Laplace function is used.

Laplace(f ) ≡
∂2f

∂f 2
+

∂2f

∂y2

The first derivatives of the above equations are along the x

and y directions. They are then combined into four directions
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TABLE 1 Statistical results of publicly available datasets.

Name NYUDv2 SUN RGB-D SceneN N 2D-3D-S SUN GG SceneNet Matterport3D

RGB-D

ScanNet Data

Authenticity Real Real Real Real Synthesis Synthesis Real Real

Time 2012 2015 2016 2017 2016 2017 2017 2017

RGB Yes Yes - Yes None Yes Yes None

Depth Yes Yes Yes Yes None Yes Yes Yes

Semantic Yes Yes Yes Yes None Yes – Yes

Size 640*480 – 640*480 1,080*1,080 – 320*240 1,280*1,024 968*1,296

Number of categories 894 800 – 13 84 255 40 –

Number of types 26 47 – 11 24 5 3 1513

Number of photos 1449 10,335 – 70,496 – 5M 1,94,400 2.5M

TABLE 2 Statistics of the final evaluation index results.

Class % of pixel

possession (%)

mean_presition

(%)

mean_recall (%) Acc (%) ave_acc (%) mean_IOU (%)

0-others 23.9 72.5 72.5 73.4 68.6 56.7

1-ceiling 1.1 77.8 82.2

2-wall 24.0 89.6 86.1

3-floor 13.3 89.4 80.5

4-window 6.6 75.3 51.8

5-door 2.7 55.9 43.4

6-table 11.2 72.3 62.7

7-char 7.3 64.4 82.9

8-sofa 2.1 57.6 31.9

9-cabinet 5.0 54.7 43.9

9-monitor 2.8 65.0 50.1

Total-have0 100 76.6 71.5 –

Total-no0 76.1 77.9 71.2

of differentiation. The local extremum of the differentiation in

these directions is a candidate for the boundary.

After the boundary has been obtained, it needs to be

segmented, where two thresholds are set, namely, upper and

lower. If the gradient of a pixel exceeds the upper threshold, it

is considered an edge, and images below this threshold cannot

be recognized. Between these two boundaries, if it is connected

to a point that exceeds the threshold, then it can be considered

an edge. Canny suggests that the threshold ratio of upper and

lower thresholds should be 2:1 to 3:1. The extracted profiles are

shown in Figure 8.

After acquiring the profile of the target, some unsatisfactory

situations may arise, and it is then necessary to fine-tune the

resulting profile. Here, we are going to use Sneck’s energy profile.

The energy in Sneck’s model enables the curve to be smooth

and continuous, while the external energy makes its positioning

more precise. It is modeled as follows:

Econtour = α ∗ Eelastic + β ∗ Ebending + γ ∗ Eexternal

The energy equation shows that Econtour contains three

components, namely, the elastic energy Eelastic, the bending

energy Ebending , and the external energy Eelastic. The elastic

energy and the bending energy are called the internal energy.

Generally, α, β, γ is adjusted to control the change in

the Snake model. In contrast, the elastic energy Eelastic in

the above equation is generally expressed as the Euclidean

distance between two points, and the bending energy Ebending
is expressed as

Ebending =

∣

∣Pi+1 − 2Pi − P1−i

∣

∣

2

where Pi+1,pi, and pi−1 are the three neighboring points. The

final external energy is expressed in this article as the distance

from the point to the geometric center, i.e.

Eexternal =

√

(Pix −Mx)
2
+ (Piy −My)

2
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FIGURE 10

Semantic segmentation results for test data.

where Pix and Piy are the current points and Mx and My are the

geometric centers of the contour lines.

The shape of the object can be well adjusted by adjusting

the parameters of the Sneck curve mentioned above. After

the contour lines have been obtained, they are binarised and

summed with the original image to obtain an image containing

only the object itself with a white background. The process is

illustrated in Figure 9.

Experimental analysis of application
practice

Description of the experimental process

For the problem of semantic segmentation in 3D scenes, this

part focuses on the description and processing of experimental

data and the evaluation and analysis of practical results to test

the proposed method in this article.

Finally, the generation of key frame-sense point clouds

and the 3P-ICP algorithm were verified using the Microsoft

kinect_V1 acquisition device, the 3D semantic scene was

reconstructed, and the experimental results were summarized

and analyzed, proving that the methods and algorithms

described in this article are feasible and effective.

Description of the experimental dataset

Regarding RGB-D scene data, a number of datasets

were published between 2012 and 2017, including NYUDv2,

SUNRGB-D, SceneNN, 2D-3D-S, SUNGG, SceneNetRGB-D,

Matterport3D, and ScanNetData, and were analyzed and

collated according to dataset type, whether they contained color

images, depth images, 2D semantic labels, scene size, label

category, scene type, and data size. The results of the publicly

available dataset statistics are shown in Table 1.
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FIGURE 11

Semantic segmentation results of the actual collected data.

FIGURE 12

Comparison of segmentation results of dual data streams with di�erent channels of data.

Semantic segmentation network model
experiments

Before conducting the semantic segmentation network

model experiments, its parameters are set as follows: amount

of training data: 60,000; mini-batch method: batch_size = 100

number of iterations; iteration = 30,000; average number of

iterations per epoch: 60,000/100 = 600. When the iteration

proceeds to 600 times, it is considered to have completed an

epoch. Through long-term training, the samples were predicted

using the evaluation index, and the final conclusions were as

follows: the proportion of pixels in the multiclass segmentation

task varied widely, with an average distribution between 1.1 and

24.0%, but the accuracy and recovery rates for each classification

were high, and the network model attenuated the effect of

the proportion of pixel types on the segmentation effect. The

algorithm achieved better results in terms of pixel accuracy, pixel

prediction accuracy, and average predicted intersection ratio,

objectively demonstrating the correctness of the method. The

statistics of the final evaluation indexes are shown in Table 2.

Based on this, the semantic partitioning of the two data

streams is analyzed using the semantic partitioning network
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TABLE 3 Comparison of evaluation metrics for dual data streams and di�erent channel data.

Data Channel Acc (%) ave_acc (%) ave_ mean_IOU (%) mean_presition(No 0) (%) ave_mean_recall(No 0) (%)

Depth 53.8 49.5 37.5 60.8 53.4

RGB 59.7 54.7 43.3 65.7 57.1

RGB-D 65.8 59.6 46.9 70.1 64.2

Ours 73.4 68.6 56.7 77.9 71.2

FIGURE 13

Conversion of 3D point cloud data to 2D depth map data.

model built by U-Net, and the corresponding semantic

partitioning results are given. In Figure 10, the first line is the

input RGB image, the second is the depth image, the fourth is

the prediction of the characteristics of the RGB data stream path,

the fifth is the depth data stream channel feature prediction, and

the last line is a network model based on the semantic division of

the two data streams by U-Net. Visually, it can be seen that the

network has good semantic segmentation capabilities, while the

color RGB and depth data streams show significant differences

in different classifications based on the data characteristics, for

example, the depth information features of the wall type are not

significant, so the learning of the whole network relies mainly

on RGB color images. In the curtain type, features such as the

depth waveform of the depth map data are more significantly

represented than in the color images and, therefore, the final

result depends on the depth map. By classifying two different

data streams, RGB and depth, and fusing their features, better

results were obtained. The semantic segmentation results for

the test data and for the actual acquisition data are shown in

Figures 10, 11, respectively.

To further evaluate the effectiveness of the U-Net-

based semantic segmentation network for dual data streams,

this article compares three data types, namely, RGB three-

channel data, depth single-channel data, and RGB-D four-

pass data, using the U-Net technique, and comes up with the

optimal solution for both data streams. A comparison of the

segmentation results between the dual data streams and the

different channel data is shown in Figure 12, and a comparison

of the evaluation metrics between the dual data streams and the

different channel data is shown in Table 3.

Finally, a secondary data stream semantic segmentation was

performed on the FCN, the original U-Net network using this

training data, as shown in Figure 12 and Table 4. In Figure 12,

the segmentation results of the original U-Net are shownwith an

equal scale enlargement of the size 640∗480. The segmentation

results of the FCN have good boundaries and poor edge quality,

and the segmentation is low in all metrics; moreover, because of

the difference in size and quality compared to the original U-Net

compared to the optimized U-Net network, its output image size

and quality were improved, while mean_IOU increased by 7%.

Results and analysis of the keyframe
semantic point cloud generation method

For the Microsoft kinect_V1 acquisition device, the device

parameters were midpoint u0 = 325.5, v0 = 253.5, focal length

fx = 518.0, and fy = 519.0.

According to the conversion of point clouds to depth maps,

the black and white point clouds were first converted into depth
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FIGURE 14

Example of semantic segmentation results. (A) Depth map. (B) Depth map filtering. (C) Color map. (D) 2D semantics. (E) Semantic point cloud.

TABLE 4 Comparison of evaluation metrics for di�erent networks using dual data stream training methods.

Network Acc (%) ave_acc (%) ave_ mean_IOU (%) mean_presition (No 0) (%) ave_mean_recall (No 0) (%)

OID-U-Net 67.0 64.2 49.4 71.2 65.4

FCN 47.8 44.1 35.9 51.1 48.9

Ours 73.4 68.6 56.7 77.9 71.2

maps, the effect of which is shown in Figure 13, which realizes

the conversion of 3D point clouds into 2D depth maps.

An example of the results of semantic segmentation is shown

in Figure 14. The diagram is divided into five sub diagrams

a, b, c, d, e, which are the results of the segmentation in

different periods, and the five sub diagrams together form

the segmentation process. A multiscale bidirectional filtering

of the images was performed and then combined with color

photographs to form a U-Net-based semantic segmentation

network to obtain 2D semantic segmentation results, which

are displayed in different colors, where the first action detects

the sample, the second line indicates the predicted result of

the actual data, subfigure (a) is the depth map after the

transformation of the point cloud data, subfigure (c) is the

acquired color photographic data, and subplot (d) is the

input of (b) chart data and (c) to a U-Net-based dual data

stream semantic segmentation network model, resulting in

a multicolour display. Finally, the formulation is used to

semantically segment the image and transform it into a 3D point

cloud with the corresponding categorical colors, as shown in

subfigure (e), to obtain a keyframe semantic point cloud.

Conclusion

The semantics of images are the key to understanding

the real-world machine learning. In terms of in-depth data

acquisition, this thesis focuses on the semantic understanding

of 3D point clouds and gives a semantic-based 3D model based

on this. In terms of semantic segmentation, the U-Net technique

is used to achieve semantic segmentation of two data streams,

and the relationship between RGB and depth data features is

traded off by using preferential separation followed by fusion

of RGB and depth data streams, thus weakening the impact

of the semantic segmentation results of 2D images caused

by camera parameters and room illumination that cannot be
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controlled by camera parameter changes and room illumination.

This reduces the impact of data occlusion, incompleteness,

disorder, difficulty in feature extraction, and large data volume

on semantic segmentation, thus improving the accuracy of

semantic segmentation.

Due to various reasons, there are still some shortcomings

and areas that need to be improved. According to some

characteristics of the algorithm and experimental aspects of this

article, the author believes that the method can be improved and

expanded in the future from the following aspects.

1. Further complication of experimental data. The experimental

data sources in this article are not enough, and more complex

and more training data are needed so that the trained model

can be more accurate for experiments.

2. The U-Net model will be optimized in the future to improve

the speed and accuracy of its model, which will better achieve

the purpose of this study.
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