1,158 research outputs found
Capacitance of Gated GaAs/AlGaAs Heterostructures Subject to In-plane Magnetic Fields
A detailed analysis of the capacitance of gated GaAs/AlGaAs heterostructures
is presented. The nonlinear dependence of the capacitance on the gate voltage
and in-plane magnetic field is discussed together with the capacitance quantum
steps connected with a population of higher 2D gas subbands. The results of
full self-consistent numerical calculations are compared to recent experimental
data.Comment: 4 pages, Revtex. 4 PostScript figures in an uuencoded compressed file
available upon request. Phys. Rev.B, in pres
Resistance spikes and domain wall loops in Ising quantum Hall ferromagnets
We explain the recent observation of resistance spikes and hysteretic
transport properties in Ising quantum Hall ferromagnets in terms of the unique
physics of their domain walls. Self-consistent RPA/Hartree-Fock theory is
applied to microscopically determine properties of the ground state and
domain-wall excitations. In these systems domain wall loops support
one-dimensional electron systems with an effective mass comparable to the bare
electron mass and may carry charge. Our theory is able to account
quantitatively for the experimental Ising critical temperature and to explain
characteristics of the resistive hysteresis loops.Comment: 4 pages, 3 figure
Self-Consistent Electron Subbands of Gaas/Algaas Heterostructure in Magnetic Fields Parallel to the Interface
The effect of strong magnetic fields parallel to GaAs/AlGaAs interface on the
subband structure of a 2D electron layer is ivestigated theoretically. The
system with two levels occupied in zero magnetic field is considered and the
magnetic field induced depletion of the second subband is studied. The
confining potential and the electron dispersion relations are calculated
self-consistently, the electron- electron interaction is taken into account in
the Hartree approximation.Comment: written in LaTeX, 8 pages, 4 figs. available on request from
[email protected]
Plasmon mass and Drude weight in strongly spin-orbit-coupled 2D electron gases
Spin-orbit-coupled two-dimensional electron gases (2DEGs) are a textbook
example of helical Fermi liquids, i.e. quantum liquids in which spin (or
pseudospin) and momentum degrees-of-freedom at the Fermi surface have a
well-defined correlation. Here we study the long-wavelength plasmon dispersion
and the Drude weight of archetypical spin-orbit-coupled 2DEGs. We first show
that these measurable quantities are sensitive to electron-electron
interactions due to broken Galileian invariance and then discuss in detail why
the popular random phase approximation is not capable of describing the
collective dynamics of these systems even at very long wavelengths. This work
is focussed on presenting approximate microscopic calculations of these
quantities based on the minimal theoretical scheme that captures the basic
physics correctly, i.e. the time-dependent Hartree-Fock approximation. We find
that interactions enhance the "plasmon mass" and suppress the Drude weight. Our
findings can be tested by inelastic light scattering, electron energy loss, and
far-infrared optical-absorption measurements.Comment: 18 pages, 11 figures, submitte
In-Plane Magnetic Field Induced Anisotropy of 2D Fermi Contours and the Field Dependent Cyclotron Mass
The electronic structure of a 2D gas subjected to a tilted magnetic field,
with a strong component parallel to the GaAs/AlGaAs interface and a weak
component oriented perpendicularly, is studied theoretically. It is shown that
the parallel field component modifies the originally circular shape of a Fermi
contour while the perpendicular component drive an electron by the Lorentz
force along a Fermi line with a cyclotron frequency given by its shape. The
corresponding cyclotron effective mass is calculated self-consistently for
several concentrations of 2D carriers as a function of the in-plane magnetic
field. The possibility to detect its field-induced deviations from the zero
field value experimentally is discussed.Comment: written in LaTeX, 9 pages, 4 figures (6 pages) in 1 PS file
(compressed and uuencoded) available on request from [email protected],
SM-JU-93-
Optical conductivity of Mn doped GaAs
We study the optical conductivity in the III-V diluted magnetic semiconductor
GaMnAs and compare our calculations to available experimental data. Our model
study is able to reproduce both qualitatively and quantitatively the observed
measurements. We show that compensation (low carrier density) leads, in
agreement to the observed measurements to a red shift of the broad peak located
at approximately 200 meV for the optimally annealed sample. The non
perturbative treatment appears to be essential, otherwise a blueshift and an
incorrect amplitude would be obtained. By calculating the Drude weight (order
parameter) we establish the metal-insulator phase diagram. We indeed find that
Mn doped GaAs is close to the metal-insulator transition and that for 5 and
7 doped samples, 20 of the carriers only are delocalized. We have found
that the optical mass is approximately 2 m. We have also interesting
results for overdoped samples which could be experimentally realized by Zn
codoping.Comment: the manuscript has been extended, new figures are include
Infrared magneto-optical properties of (III,Mn)V ferromagetic semiconductors
We present a theoretical study of the infrared magneto-optical properties of
ferromagnetic (III,Mn)V semiconductors. Our analysis combines the kinetic
exchange model for (III,Mn)V ferromagnetism with Kubo linear response theory
and Born approximation estimates for the effect of disorder on the valence band
quasiparticles. We predict a prominent feature in the ac-Hall conductivity at a
frequency that varies over the range from 200 to 400 meV, depending on Mn and
carrier densities, and is associated with transitions between heavy-hole and
light-hole bands. In its zero frequency limit, our Hall conductivity reduces to
the -space Berry's phase value predicted by a recent theory of the
anomalous Hall effect that is able to account quantitatively for experiment. We
compute theoretical estimates for magnetic circular dichroism, Faraday
rotation, and Kerr effect parameters as a function of Mn concentration and free
carrier density. The mid-infrared response feature is present in each of these
magneto-optical effects.Comment: 11 pages, 5 figure
Spins, charges and currents at Domain Walls in a Quantum Hall Ising Ferromagnet
We study spin textures in a quantum Hall Ising ferromagnet. Domain walls
between ferro and unpolarized states at are analyzed with a functional
theory supported by a microscopic calculation. In a neutral wall, Hartree
repulsion prevents the appearance of a fan phase provoked by a negative
stiffness. For a charged system, electrons become trapped as solitons at the
domain wall. The size and energy of the solitons are determined by both Hartree
and spin-orbit interactions. Finally, we discuss how electrical transport takes
place through the domain wall.Comment: 4 pages, 3 figures include
Ferromagnetism in Diluted Magnetic Semiconductor Heterojunction Systems
Diluted magnetic semiconductors (DMSs), in which magnetic elements are
substituted for a small fraction of host elements in a semiconductor lattice,
can become ferromagnetic when doped. In this article we discuss the physics of
DMS ferromagnetism in systems with semiconductor heterojunctions. We focus on
the mechanism that cause magnetic and magnetoresistive properties to depend on
doping profiles, defect distributions, gate voltage, and other system
parameters that can in principle be engineered to yield desired results.Comment: 12 pages, 7 figures, review, special issue of Semicon. Sci. Technol.
on semiconductor spintronic
- …