1,158 research outputs found

    Capacitance of Gated GaAs/AlGaAs Heterostructures Subject to In-plane Magnetic Fields

    Full text link
    A detailed analysis of the capacitance of gated GaAs/AlGaAs heterostructures is presented. The nonlinear dependence of the capacitance on the gate voltage and in-plane magnetic field is discussed together with the capacitance quantum steps connected with a population of higher 2D gas subbands. The results of full self-consistent numerical calculations are compared to recent experimental data.Comment: 4 pages, Revtex. 4 PostScript figures in an uuencoded compressed file available upon request. Phys. Rev.B, in pres

    Resistance spikes and domain wall loops in Ising quantum Hall ferromagnets

    Full text link
    We explain the recent observation of resistance spikes and hysteretic transport properties in Ising quantum Hall ferromagnets in terms of the unique physics of their domain walls. Self-consistent RPA/Hartree-Fock theory is applied to microscopically determine properties of the ground state and domain-wall excitations. In these systems domain wall loops support one-dimensional electron systems with an effective mass comparable to the bare electron mass and may carry charge. Our theory is able to account quantitatively for the experimental Ising critical temperature and to explain characteristics of the resistive hysteresis loops.Comment: 4 pages, 3 figure

    Self-Consistent Electron Subbands of Gaas/Algaas Heterostructure in Magnetic Fields Parallel to the Interface

    Full text link
    The effect of strong magnetic fields parallel to GaAs/AlGaAs interface on the subband structure of a 2D electron layer is ivestigated theoretically. The system with two levels occupied in zero magnetic field is considered and the magnetic field induced depletion of the second subband is studied. The confining potential and the electron dispersion relations are calculated self-consistently, the electron- electron interaction is taken into account in the Hartree approximation.Comment: written in LaTeX, 8 pages, 4 figs. available on request from [email protected]

    Plasmon mass and Drude weight in strongly spin-orbit-coupled 2D electron gases

    Get PDF
    Spin-orbit-coupled two-dimensional electron gases (2DEGs) are a textbook example of helical Fermi liquids, i.e. quantum liquids in which spin (or pseudospin) and momentum degrees-of-freedom at the Fermi surface have a well-defined correlation. Here we study the long-wavelength plasmon dispersion and the Drude weight of archetypical spin-orbit-coupled 2DEGs. We first show that these measurable quantities are sensitive to electron-electron interactions due to broken Galileian invariance and then discuss in detail why the popular random phase approximation is not capable of describing the collective dynamics of these systems even at very long wavelengths. This work is focussed on presenting approximate microscopic calculations of these quantities based on the minimal theoretical scheme that captures the basic physics correctly, i.e. the time-dependent Hartree-Fock approximation. We find that interactions enhance the "plasmon mass" and suppress the Drude weight. Our findings can be tested by inelastic light scattering, electron energy loss, and far-infrared optical-absorption measurements.Comment: 18 pages, 11 figures, submitte

    In-Plane Magnetic Field Induced Anisotropy of 2D Fermi Contours and the Field Dependent Cyclotron Mass

    Full text link
    The electronic structure of a 2D gas subjected to a tilted magnetic field, with a strong component parallel to the GaAs/AlGaAs interface and a weak component oriented perpendicularly, is studied theoretically. It is shown that the parallel field component modifies the originally circular shape of a Fermi contour while the perpendicular component drive an electron by the Lorentz force along a Fermi line with a cyclotron frequency given by its shape. The corresponding cyclotron effective mass is calculated self-consistently for several concentrations of 2D carriers as a function of the in-plane magnetic field. The possibility to detect its field-induced deviations from the zero field value experimentally is discussed.Comment: written in LaTeX, 9 pages, 4 figures (6 pages) in 1 PS file (compressed and uuencoded) available on request from [email protected], SM-JU-93-

    Optical conductivity of Mn doped GaAs

    Full text link
    We study the optical conductivity in the III-V diluted magnetic semiconductor GaMnAs and compare our calculations to available experimental data. Our model study is able to reproduce both qualitatively and quantitatively the observed measurements. We show that compensation (low carrier density) leads, in agreement to the observed measurements to a red shift of the broad peak located at approximately 200 meV for the optimally annealed sample. The non perturbative treatment appears to be essential, otherwise a blueshift and an incorrect amplitude would be obtained. By calculating the Drude weight (order parameter) we establish the metal-insulator phase diagram. We indeed find that Mn doped GaAs is close to the metal-insulator transition and that for 5% and 7% doped samples, 20% of the carriers only are delocalized. We have found that the optical mass is approximately 2 me_{e}. We have also interesting results for overdoped samples which could be experimentally realized by Zn codoping.Comment: the manuscript has been extended, new figures are include

    Infrared magneto-optical properties of (III,Mn)V ferromagetic semiconductors

    Full text link
    We present a theoretical study of the infrared magneto-optical properties of ferromagnetic (III,Mn)V semiconductors. Our analysis combines the kinetic exchange model for (III,Mn)V ferromagnetism with Kubo linear response theory and Born approximation estimates for the effect of disorder on the valence band quasiparticles. We predict a prominent feature in the ac-Hall conductivity at a frequency that varies over the range from 200 to 400 meV, depending on Mn and carrier densities, and is associated with transitions between heavy-hole and light-hole bands. In its zero frequency limit, our Hall conductivity reduces to the k\vec k-space Berry's phase value predicted by a recent theory of the anomalous Hall effect that is able to account quantitatively for experiment. We compute theoretical estimates for magnetic circular dichroism, Faraday rotation, and Kerr effect parameters as a function of Mn concentration and free carrier density. The mid-infrared response feature is present in each of these magneto-optical effects.Comment: 11 pages, 5 figure

    Spins, charges and currents at Domain Walls in a Quantum Hall Ising Ferromagnet

    Full text link
    We study spin textures in a quantum Hall Ising ferromagnet. Domain walls between ferro and unpolarized states at ν=2\nu=2 are analyzed with a functional theory supported by a microscopic calculation. In a neutral wall, Hartree repulsion prevents the appearance of a fan phase provoked by a negative stiffness. For a charged system, electrons become trapped as solitons at the domain wall. The size and energy of the solitons are determined by both Hartree and spin-orbit interactions. Finally, we discuss how electrical transport takes place through the domain wall.Comment: 4 pages, 3 figures include

    Ferromagnetism in Diluted Magnetic Semiconductor Heterojunction Systems

    Full text link
    Diluted magnetic semiconductors (DMSs), in which magnetic elements are substituted for a small fraction of host elements in a semiconductor lattice, can become ferromagnetic when doped. In this article we discuss the physics of DMS ferromagnetism in systems with semiconductor heterojunctions. We focus on the mechanism that cause magnetic and magnetoresistive properties to depend on doping profiles, defect distributions, gate voltage, and other system parameters that can in principle be engineered to yield desired results.Comment: 12 pages, 7 figures, review, special issue of Semicon. Sci. Technol. on semiconductor spintronic
    corecore