9 research outputs found

    Preparatory planning framework for Created Out of Mind: Shaping perceptions of dementia through art and science [version 1; referees: 2 approved]

    Get PDF
    Created Out of Mind is an interdisciplinary project, comprised of individuals from arts, social sciences, music, biomedical sciences, humanities and operational disciplines. Collaboratively we are working to shape perceptions of dementias through the arts and sciences, from a position within the Wellcome Collection. The Collection is a public building, above objects and archives, with a porous relationship between research, museum artefacts, and the public. This pre-planning framework will act as an introduction to Created Out of Mind. The framework explains the rationale and aims of the project, outlines our focus for the project, and explores a number of challenges we have encountered by virtue of working in this way

    Current and Future Patterns of Global Marine Mammal Biodiversity

    Get PDF
    Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC) temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available

    General circulation of the Eastern Mediterranean

    No full text
    A novel description of the phenomenology of the Eastern Mediterranean is presented based upon a comprehensive pooled hydrographic data base collected during 1985-1987 and analyzed by cooperating scientists from several institutions and nations (the POEM project). Related dynamical process and modeling studies are also overviewed. The circulation and its variabilities consist of three predominant and interacting scales: basin scale, subbasin scale, and mesoscale. Highly resolved and unbiased maps of the basin wide circulation in the thermocline layer are presented which provide a new depiction of the main thermocline general circulation, composed of subbasin scale gyres interconnected by intense jets and meandering currents. Semipermanent features exist but important subbasin scale variabilities also occur on many time scales. Mesoscale variabilities modulate the subbasin scale and small mesoscale eddies populate the open sea, especially the south-eastern Levantine basin. Clear evidence indicates Levantine Intermediate Water (LIW) to be present over most of the Levantine Basin, implying that formation of LIW is not localized but rather is ubiquitous. The Ionian and Levantine basins are confirmed to form one deep thermohaline cell with deep water of Adriatic origin and to have a turnover time of one and a quarter centuries. Prognostic, inverse, box and data assimilative modeling results are presented based on both climatological and POEM data. The subbasin scale elements of the general circulation are stable and robust to the dynamical adjustment process. These findings bear importantly on a broad range of problems in ocean science and marine technology that depend upon knowledge of the general circulation and water mass structure, including biogeochemical fluxes, regional climate, coastal interactions, pollution and environmental management. Of global ocean scientific significance are the fundamental processes of water mass formations, transformations and dispersion which occur in the basin. © 1992

    General circulation of the Eastern Mediterranean

    No full text
    A novel description of the phenomenology of the Eastern Mediterranean is presented based upon a comprehensive pooled hydrographic data base collected during 1985-1987 and analyzed by cooperating scientists from several institutions and nations (the POEM project). Related dynamical process and modeling studies are also overviewed. The circulation and its variabilities consist of three predominant and interacting scales: basin scale, subbasin scale, and mesoscale. Highly resolved and unbiased maps of the basin wide circulation in the thermocline layer are presented which provide a new depiction of the main thermocline general circulation, composed of subbasin scale gyres interconnected by intense jets and meandering currents. Semipermanent features exist but important subbasin scale variabilities also occur on many time scales. Mesoscale variabilities modulate the subbasin scale and small mesoscale eddies populate the open sea, especially the south-eastern Levantine basin. Clear evidence indicates Levantine Intermediate Water (LIW) to be present over most of the Levantine Basin, implying that formation of LIW is not localized but rather is ubiquitous. The Ionian and Levantine basins are confirmed to form one deep thermohaline cell with deep water of Adriatic origin and to have a turnover time of one and a quarter centuries. Prognostic, inverse, box and data assimilative modeling results are presented based on both climatological and POEM data. The subbasin scale elements of the general circulation are stable and robust to the dynamical adjustment process. These findings bear importantly on a broad range of problems in ocean science and marine technology that depend upon knowledge of the general circulation and water mass structure, including biogeochemical fluxes, regional climate, coastal interactions, pollution and environmental management. Of global ocean scientific significance are the fundamental processes of water mass formations, transformations and dispersion which occur in the basin. © 1992
    corecore