8 research outputs found
Effects of seasonality, trophic state and landscape properties on CO2 saturation in low-latitude lakes and reservoirs.
Item does not contain fulltex
Environmental vulnerability of the global ocean plankton community interactome
Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles, and help regulate climate. Though global surveys are starting to reveal ecological drivers underlying planktonic community structure, and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here we leveraged Tara Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network â the community interactome â and used niche modeling to assess its vulnerabilities to environmental change. Globally, this revealed a plankton interactome self-organized latitudinally into marine biomes (Trades, Westerlies, Polar), and more connected poleward. Integrated niche modeling revealed biome-specific community interactome responses to environmental change, and forecasted most affected lineages for each community. These results provide baseline approaches to assess community structure and organismal interactions under climate scenarios, while identifying plausible plankton bioindicators for ocean monitoring of climate change