809 research outputs found

    Fixed-angle plates in patella fractures - a pilot cadaver study

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Modified anterior tension wiring with K-wires and cannulated lag screws with anterior tension wiring are currently the fixation of choice for patellar fractures. Failure of fixation, migration of the wires, postoperative pain and resulting revision surgery, however, are not uncommon. After preliminary biomechanical testing of a new fixed-angle plate system especially designed for fixation of patella fractures the aim of this study was to evaluate the surgical and anatomical feasibility of implanting such a plate-device at the human patella.</p> <p>Methods</p> <p>In six fresh unfixed female cadavers without history of previous fractures around the knee (average age 88.8 years) a bilateral fixed-angle plate fixation of the patella was carried out after previous placement of a transverse central osteotomy. Operative time, intra-operative problems, degree of retropatellar arthritis (following Outerbridge), quality of reduction and existence of any intraarticular screw placement have been raised. In addition, lateral and anteroposterior radiographs of all specimens were made.</p> <p>Results</p> <p>Due to the high average age of 88.8 years no patella showed an unimpaired retropatellar articular surface and all were severely osteoporotic, which made a secure fixation of the reduction forceps during surgery difficult. The operation time averaged 49 minutes (range: 36-65). Although in postoperative X-rays the fracture gap between the fragments was still visible, the analysis of the retropatellar surface showed no residual articular step or dehiscence > 0.5 mm. Also in a total of 24 inserted screws not one intraarticular malposition was found. No intraoperative complications were noticed.</p> <p>Conclusions</p> <p>Osteosynthesis of a medial third patella fracture with a bilateral fixed-angle plate-device is surgically and anatomically feasible without difficulties. Further studies have to depict whether the bilateral fixed-angle plate-osteosynthesis of the patella displays advantages over the established operative procedures.</p

    Multi-minicore Disease

    Get PDF
    Multi-minicore Disease (MmD) is a recessively inherited neuromuscular disorder characterized by multiple cores on muscle biopsy and clinical features of a congenital myopathy. Prevalence is unknown. Marked clinical variability corresponds to genetic heterogeneity: the most instantly recognizable classic phenotype characterized by spinal rigidity, early scoliosis and respiratory impairment is due to recessive mutations in the selenoprotein N (SEPN1) gene, whereas recessive mutations in the skeletal muscle ryanodine receptor (RYR1) gene have been associated with a wider range of clinical features comprising external ophthalmoplegia, distal weakness and wasting or predominant hip girdle involvement resembling central core disease (CCD). In the latter forms, there may also be a histopathologic continuum with CCD due to dominant RYR1 mutations, reflecting the common genetic background. Pathogenetic mechanisms of RYR1-related MmD are currently not well understood, but likely to involve altered excitability and/or changes in calcium homeoestasis; calcium-binding motifs within the selenoprotein N protein also suggest a possible role in calcium handling. The diagnosis of MmD is based on the presence of suggestive clinical features and multiple cores on muscle biopsy; muscle MRI may aid genetic testing as patterns of selective muscle involvement are distinct depending on the genetic background. Mutational analysis of the RYR1 or the SEPN1 gene may provide genetic confirmation of the diagnosis. Management is mainly supportive and has to address the risk of marked respiratory impairment in SEPN1-related MmD and the possibility of malignant hyperthermia susceptibility in RYR1-related forms. In the majority of patients, weakness is static or only slowly progressive, with the degree of respiratory impairment being the most important prognostic factor

    The role of spin in the degradation of organic photovoltaics

    Get PDF
    Stability is now a critical factor in the commercialization of organic photovoltaic (OPV) devices. Both extrinsic stability to oxygen and water and intrinsic stability to light and heat in inert conditions must be achieved. Triplet states are known to be problematic in both cases, leading to singlet oxygen production or fullerene dimerization. The latter is thought to proceed from unquenched singlet excitons that have undergone intersystem crossing (ISC). Instead, we show that in bulk heterojunction (BHJ) solar cells the photo-degradation of C60 via photo-oligomerization occurs primarily via back-hole transfer (BHT) from a charge-transfer state to a C60 excited triplet state. We demonstrate this to be the principal pathway from a combination of steady-state optoelectronic measurements, time-resolved electron paramagnetic resonance, and temperature-dependent transient absorption spectroscopy on model systems. BHT is a much more serious concern than ISC because it cannot be mitigated by improved exciton quenching, obtained for example by a finer BHJ morphology. As BHT is not specific to fullerenes, our results suggest that the role of electron and hole back transfer in the degradation of BHJs should also be carefully considered when designing stable OPV devices

    BMW – Mastering the Crises with “New Efficiency?”

    Get PDF
    Purpose Make a contribution on company business models and typical reactions to economic crises. Design/methodology/approach Media-analysis-based case study. Findings Crisis is handled through drawing on a strategy deriving from the typical features of the company; through the crisis these features are even intensified. Research limitations/implications Multinational companies are complex and only transparent to a small degree; the empirical data therefore rests on a database with articles. Social implications Social implications can be seen at the BMW as a functioning example for social partnership as a form of economic embeddedness at the societal level

    Gain-switched all-fiber laser with narrow bandwidth

    Get PDF
    Gain-switching of a CW fiber laser is a simple and cost-effective approach to generate pulses using an all-fiber system. We report on the construction of a narrow bandwidth (below 0.1 nm) gain-switched fiber laser and optimize the pulse energy and pulse duration under this constraint. The extracted pulse energy is 20 jiJ in a duration of 135 ns at 7 kHz. The bandwidth increases for a higher pump pulse energy and repetition rate, and this sets the limit of the output pulse energy. A single power amplifier is added to raise the peak power to the kW-level and the pulse energy to 230 ĂźJ while keeping the bandwidth below 0.1 nm. This allows frequency doubling in a periodically poled lithium tantalate crystal with a reasonable conversion efficiency

    Structural insights into crista junction formation by the Mic60-Mic19 complex

    Get PDF
    Mitochondrial cristae membranes are the oxidative phosphorylation sites in cells. Crista junctions (CJs) form the highly curved neck regions of cristae and are thought to function as selective entry gates into the cristae space. Little is known about how CJs are generated and maintained. We show that the central coiled-coil (CC) domain of the mitochondrial contact site and cristae organizing system subunit Mic60 forms an elongated, bow tie–shaped tetrameric assembly. Mic19 promotes Mic60 tetramerization via a conserved interface between the Mic60 mitofilin and Mic19 CHCH (CC-helix-CC-helix) domains. Dimerization of mitofilin domains exposes a crescent-shaped membrane-binding site with convex curvature tailored to interact with the curved CJ neck. Our study suggests that the Mic60-Mic19 subcomplex traverses CJs as a molecular strut, thereby controlling CJ architecture and function

    RNASeq analysis reveals biological processes governing the clinical behaviour of endometrioid and serous endometrial cancers

    Get PDF
    BACKGROUND: Endometrial carcinoma comprises a group of tumors with distinct histologic and molecular features, and clinical behavior. Here we sought to define the biological processes that govern the clinical behavior of endometrial cancers. METHODS: Sixteen prototype genes representative of different biological processes that would likely play a role in endometrial and other hormone-driven cancers were defined. RNA-sequencing gene expression data from 323 endometrial cancers from The Cancer Genome Atlas were used to determine the transcription module of each prototype gene. The expression of prototype genes and modules and their association with outcome was assessed in univariate and multivariate survival analyses. The association of MSH6 expression with outcome was validated in an independent cohort of 243 primary endometrial cancers using immunohistochemistry. RESULTS: We observed that the clinical behavior of endometrial carcinomas as a group was associated with hormone receptor signaling, PI3K pathway signaling and DNA mismatch repair processes. When analyzed separately, in endometrioid carcinomas, hormone receptor, PI3K and DNA mismatch repair modules were significantly associated with outcome in univariate analysis, whereas the clinical behavior of serous cancers was likely governed by apoptosis and Wnt signaling. Multivariate survival analysis revealed that MSH6 expression was associated with outcome of endometrial cancer patients independently from traditional prognostic clinicopathologic parameters, which was confirmed in an independent cohort at the protein level. CONCLUSION: Endometrioid and serous endometrial cancers are underpinned by distinct molecular pathways. MSH6 expression levels may be associated with outcome in endometrial cancers as a group
    • …
    corecore