22 research outputs found
Endurance, resistance and resilience in the South African health care system: case studies to demonstrate mechanisms of coping within a constrained system
BACKGROUND: South Africa is at present undertaking a series of reforms to transform public health services to make them more effective and responsive to patient and provider needs. A key focus of these reforms is primary care and its overburdened, somewhat dysfunctional and hierarchical nature. This comparative case study examines how patients and providers respond in this system and cope with its systemic demands through mechanisms of endurance, resistance and resilience, using coping and agency literatures as the theoretical lenses. METHODS: As part of a larger research project carried out between 2009 and 2010, this study conducted semi-structured interviews and observations at health facilities in three South African provinces. This study explored patient experiences of access to health care, in particular, ways of coping and how health care providers cope with the health care system’s realities. From this interpretive base, four cases (two patients, two providers) were selected as they best informed on endurance, resistance and resilience. Some commentary from other respondents is added to underline the more ubiquitous nature of these coping mechanisms. RESULTS: The cases of four individuals highlight the complexity of different forms of endurance and passivity, emotion- and problem-based coping with health care interactions in an overburdened, under-resourced and, in some instances, poorly managed system. Patients’ narratives show the micro-practices they use to cope with their treatment, by not recognizing victimhood and sometimes practising unhealthy behaviours. Providers indicate how they cope in their work situations by using peer support and becoming knowledgeable in providing good service. CONCLUSIONS: Resistance and resilience narratives show the adaptive power of individuals in dealing with difficult illness, circumstances or treatment settings. They permit individuals to do more than endure (itself a coping mechanism) their circumstances, though resistance and resilience may be limited. These are individual responses to systemic forces. To transform health care, mutually supportive interactions are required among and between both patients and providers but their nature, as micro-practices, may show a way forward for system change
Judicial decision-making within political parties: A political approach
How do German intra-party tribunals manage internal conflicts? More specifically, why do they accept some cases for trial but reject others? Required by law to strictly adhere to implement rule of law standards, German intra-party tribunals are designed to insulate conflict regulation from politics. Meanwhile, research on judicial politics highlights the role of political and strategic considerations in accepting cases for trial. Building on the latter, we develop a theory that emphasizes tribunals’ political concerns such as winning elections. We test our hypotheses with a mixed-effects logit model on a novel data set covering 1088 tribunal decisions in six German parties from 1967 until 2015. Our findings indicate that political factors exert a strong effect on tribunal case acceptance. Tribunals are more likely to accept cases when suffering electoral loss and after losing government office. Moreover, tribunals dismiss cases more easily when their parties display relatively high levels of policy agreement
Towards a quantitative understanding of NOx and N2O emission formation in full-scale circulating fluidised bed combustors
A mathematical tool is being developed for studying the nitrogen oxide emission formation in circulating fluidised bed combustors. The model is based on detailed homogeneous and heterogeneous chemical kinetics and a simplified, reasonable description of CFB hydrodynamics with presumed temperature distribution (Kilpinen et al, 1999a). With the model different fuels and fuel mixtures can be compared in regard to their nitrogen oxide emission formation tendency at typical CFBC conditions. In this paper the structure of the CFBC model and its submodels are shortly described in present form. The CFBC model is tested for nitrogen oxide prediction at normal air staging conditions in a 12 MW CFB with bituminous coal and wood chips as the fuel, respectively. Comparisons of modelling results with detailed gas concentration profiles measured inside the furnace are made. The relative importance of homogeneous and heterogeneous reactions on NO and N2O concentration profiles is illustrated based on a quantitative reaction rate analysis at different parts in the combustor. The importance of effects of radical removal on particle surfaces, and thus, a decreased CO burnout and, simultaneously, enhanced rates of catalytic bed/char reactions on nitrogen oxides’ destruction are discussed
Towards a quantitative understanding of NOx and N2O emission formation in full-scale circulating fluidised bed combustors
A mathematical tool is being developed for studying the nitrogen oxide emission formation in circulating fluidised bed combustors. The model is based on detailed homogeneous and heterogeneous chemical kinetics and a simplified, reasonable description of CFB hydrodynamics with presumed temperature distribution (Kilpinen et al, 1999a). With the model different fuels and fuel mixtures can be compared in regard to their nitrogen oxide emission formation tendency at typical CFBC conditions. In this paper the structure of the CFBC model and its submodels are shortly described in present form. The CFBC model is tested for nitrogen oxide prediction at normal air staging conditions in a 12 MW CFB with bituminous coal and wood chips as the fuel, respectively. Comparisons of modelling results with detailed gas concentration profiles measured inside the furnace are made. The relative importance of homogeneous and heterogeneous reactions on NO and N2O concentration profiles is illustrated based on a quantitative reaction rate analysis at different parts in the combustor. The importance of effects of radical removal on particle surfaces, and thus, a decreased CO burnout and, simultaneously, enhanced rates of catalytic bed/char reactions on nitrogen oxides’ destruction are discussed