41,973 research outputs found

    Field Tuning the G-Factor in InAs Nanowire Double Quantum Dots

    Full text link
    We study the effects of magnetic and electric fields on the g-factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g-factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g-tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the EDSR response, allowing selective single spin control.Comment: Related papers at http://pettagroup.princeton.ed

    Radio frequency charge sensing in InAs nanowire double quantum dots

    Full text link
    We demonstrate charge sensing of an InAs nanowire double quantum dot (DQD) coupled to a radio frequency (rf) circuit. We measure the rf signal reflected by the resonator using homodyne detection. Clear single dot and DQD behavior are observed in the resonator response. rf-reflectometry allows measurements of the DQD charge stability diagram in the few-electron regime even when the dc current through the device is too small to be measured. For a signal-to-noise ratio of one, we estimate a minimum charge detection time of 350 microseconds at interdot charge transitions and 9 microseconds for charge transitions with the leads.Comment: Related papers at http://pettagroup.princeton.ed

    Transport in Almost Integrable Models: Perturbed Heisenberg Chains

    Full text link
    The heat conductivity kappa(T) of integrable models, like the one-dimensional spin-1/2 nearest-neighbor Heisenberg model, is infinite even at finite temperatures as a consequence of the conservation laws associated with integrability. Small perturbations lead to finite but large transport coefficients which we calculate perturbatively using exact diagonalization and moment expansions. We show that there are two different classes of perturbations. While an interchain coupling of strength J_perp leads to kappa(T) propto 1/J_perp^2 as expected from simple golden-rule arguments, we obtain a much larger kappa(T) propto 1/J'^4 for a weak next-nearest neighbor interaction J'. This can be explained by a new approximate conservation law of the J-J' Heisenberg chain.Comment: 4 pages, several minor modifications, title change

    Strong electron correlations in cobalt valence tautomers

    Full text link
    We have examined cobalt based valence tautomer molecules such as Co(SQ)2_2(phen) using density functional theory (DFT) and variational configuration interaction (VCI) approaches based upon a model Hamiltonian. Our DFT results extend earlier work by finding a reduced total energy gap (order 0.6 eV) between high temperature and low temperature states when we fully relax the coordinates (relative to experimental ones). Futhermore we demonstrate that the charge transfer picture based upon formal valence arguments succeeds qualitatively while failing quantitatively due to strong covalency between the Co 3dd orbitals and ligand pp orbitals. With the VCI approach, we argue that the high temperature, high spin phase is strongly mixed valent, with about 30 % admixture of Co(III) into the predominantly Co(II) ground state. We confirm this mixed valence through a fit to the XANES spectra. Moreover, the strong electron correlations of the mixed valent phase provide an energy lowering of about 0.2-0.3 eV of the high temperature phase relative to the low temperature one. Finally, we use the domain model to account for the extraordinarily large entropy and enthalpy values associated with the transition.Comment: 10 pages, 4 figures, submitted to J. Chem. Phy

    Collective effects in charge transfer within a hybrid organic-inorganic system

    Full text link
    A collective electron transfer (ET) process was discovered by studying the current noise in a field effect transistor with light-sensitive gate formed by nanocrystals linked by organic molecules to its surface. Fluctuations in the ET through the organic linker are reflected in the fluctuations of the transistor conductivity. The current noise has an avalanche character. Critical exponents obtained from the noise power spectra, avalanche distributions, and the dependence of the average avalanche size on avalanche duration are consistent with each other. A plausible model is proposed for this phenomenonComment: 15 pages 4 figures. Accepted for publication in Physical Review Letter

    Spectrum of the gamma-ray diffuse component observed from HEAO-1

    Get PDF
    The spectrum of the diffuse X and gamma ray background was measured between 15 keV and 4 MeV with the scintillation detectors aboard the HEAO 1 satellite. The apertures of the detectors were modulated on time scales of hours and the difference in counting rates measured the diffuse component flux. The observed spectrum is presented and compared with other measurements. At least two components are indicated, one below -100 keV and the other above. Possible origins are discussed
    corecore