19,629 research outputs found

    Explore the Functional Connectivity between Brain Regions during a Chemistry Working Memory Task.

    Get PDF
    Previous studies have rarely examined how temporal dynamic patterns, event-related coherence, and phase-locking are related to each other. This study assessed reaction-time-sorted spectral perturbation and event-related spectral perturbation in order to examine the temporal dynamic patterns in the frontal midline (F), central parietal (CP), and occipital (O) regions during a chemistry working memory task at theta, alpha, and beta frequencies. Furthermore, the functional connectivity between F-CP, CP-O, and F-O were assessed by component event-related coherence (ERCoh) and component phase-locking (PL) at different frequency bands. In addition, this study examined whether the temporal dynamic patterns are consistent with the functional connectivity patterns across different frequencies and time courses. Component ERCoh/PL measured the interactions between different independent components decomposed from the scalp EEG, mixtures of time courses of activities arising from different brain, and artifactual sources. The results indicate that the O and CP regions' temporal dynamic patterns are similar to each other. Furthermore, pronounced component ERCoh/PL patterns were found to exist between the O and CP regions across each stimulus and probe presentation, in both theta and alpha frequencies. The consistent theta component ERCoh/PL between the F and O regions was found at the first stimulus and after probe presentation. These findings demonstrate that temporal dynamic patterns at different regions are in accordance with the functional connectivity patterns. Such coordinated and robust EEG temporal dynamics and component ERCoh/PL patterns suggest that these brain regions' neurons work together both to induce similar event-related spectral perturbation and to synchronize or desynchronize simultaneously in order to swiftly accomplish a particular goal. The possible mechanisms for such distinct component phase-locking and coherence patterns were also further discussed

    Structural insights into the gating of DNA passage by the topoisomerase II DNA-gate.

    Get PDF
    Type IIA topoisomerases (Top2s) manipulate the handedness of DNA crossovers by introducing a transient and protein-linked double-strand break in one DNA duplex, termed the DNA-gate, whose opening allows another DNA segment to be transported through to change the DNA topology. Despite the central importance of this gate-opening event to Top2 function, the DNA-gate in all reported structures of Top2-DNA complexes is in the closed state. Here we present the crystal structure of a human Top2 DNA-gate in an open conformation, which not only reveals structural characteristics of its DNA-conducting path, but also uncovers unexpected yet functionally significant conformational changes associated with gate-opening. This structure further implicates Top2's preference for a left-handed DNA braid and allows the construction of a model representing the initial entry of another DNA duplex into the DNA-gate. Steered molecular dynamics calculations suggests the Top2-catalyzed DNA passage may be achieved by a rocker-switch-type movement of the DNA-gate

    Model independent analysis of top quark forward-backward asymmetry at the Tevatron up to \mathcal{O}(\as^2/\Lambda^2)

    Full text link
    We present the complete calculations of the forward-backward asymmetry (AFBA_{\rm FB}) and the total cross section of top quark pair production induced by dimension-six four quark operators at the Tevatron up to \mathcal{O}(\as^2/\Lambda^2). Our results show that next-to-leading order (NLO) QCD corrections can change AFBA_{\rm FB} and the total cross section by about 10%. Moreover, NLO QCD corrections reduce the dependence of AFBA_{\rm FB} and total cross section on the renormalization and factorization scales significantly. We also evaluate the total cross section and the charge asymmetry (ACA_{\rm C}) induced by these operators at the Large Hadron Collider (LHC) up to \mathcal{O}(\as^2/\Lambda^2), for the parameter space allowed by the Tevatron data. We find that the value of ACA_{\rm C} induced by these operators is much larger than SM prediction, and LHC has potential to discover these NP effects when the measurement precision increases.Comment: 25 pages, 10 figures; final version in PR

    Densest subgraph-based methods for protein-protein interaction hot spot prediction

    Get PDF
    [Background] Hot spots play an important role in protein binding analysis. The residue interaction network is a key point in hot spot prediction, and several graph theory-based methods have been proposed to detect hot spots. Although the existing methods can yield some interesting residues by network analysis, low recall has limited their abilities in finding more potential hot spots. [Result] In this study, we develop three graph theory-based methods to predict hot spots from only a single residue interaction network. We detect the important residues by finding subgraphs with high densities, i.e., high average degrees. Generally, a high degree implies a high binding possibility between protein chains, and thus a subgraph with high density usually relates to binding sites that have a high rate of hot spots. By evaluating the results on 67 complexes from the SKEMPI database, our methods clearly outperform existing graph theory-based methods on recall and F-score. In particular, our main method, Min-SDS, has an average recall of over 0.665 and an f2-score of over 0.364, while the recall and f2-score of the existing methods are less than 0.400 and 0.224, respectively. [Conclusion] The Min-SDS method performs best among all tested methods on the hot spot prediction problem, and all three of our methods provide useful approaches for analyzing bionetworks. In addition, the densest subgraph-based methods predict hot spots with only one residue interaction network, which is constructed from spatial atomic coordinate data to mitigate the shortage of data from wet-lab experiments

    Drug-Using Female Sex Workers and HIV Risk: A Systematic Review of the Global Literature

    Get PDF
    This review examines the global literature concerning HIV risk among drug-using female sex workers (DU-FSWs). In the context of HIV prevention, the possible synergetic effects of sexual risk and drug-related risk merit a systematic review to get a better understanding of such effects among this highly vulnerable population. In particular, we look at research on the association between drug use and HIV risk among female sex workers (FSWs) in terms of multiple indicators such as HIV infection, needle sharing, and unprotected sex. The current review, through synthesizing the findings from 41 studies conducted in multiple nations, reveals a complex picture of HIV risk for DU-FSWs across diverse societies. Research findings are mixed but tend to show that drug-related and sex-related risk behaviors accelerated the risk of HIV/STI among DU-FSWs, underscoring considerable vulnerabilities. However, findings about the level of the association and significance, as well as the mechanisms of HIV transmission, are inconsistent among various empirical studies. The variations in findings may be attributed to the specificities of diverse social contexts, various characteristics of the study samples, and different measurements in different studies. The mixed findings point to the need for more empirical studies targeting DU-FSWs to understand how drug use and sexual risk interactively affect this population differently in different social contexts. Future research should focus on multiple-level risk/preventive factors, assess the overlap between drug-using networks and sexual networks, and identify the synergetic dynamics between drug use and sex work. Development of conceptual frameworks and methodological innovations are also needed

    The State-of-the-Art Practices of the Internet Banking in Taiwan

    Get PDF
    This paper reports an investigation into the state-of-the-art practices of Internet banking in Taiwan. Emphasis is focused on the adoption of security technology. Three kinds of security utilities—SSL, SET, and Non-SET—are compared in terms of risks and supported functions. The author also analyzes factors that influence the development of Internet banking. The Ministry of Finance of the Taiwanese government has adopted a policy that fosters the development of Internet banking. However, understanding security technologies demands in-depth expert knowledge, and goes beyond the capacity of general citizens. The authors suggest that the first priority is given to the authority’s promulgation of laws and guidelines. Second, the banking industry needs to integrate the security mechanisms of Internet banking services with the existing environment. Finally, a risk allotment policy would help to remove fear and doubt from customer’s minds

    Topological Directional Coupler

    Full text link
    Interferometers and beam splitters are fundamental building blocks for photonic neuromorphic and quantum computing machinery. In waveguide-based photonic integrated circuits, beam-splitting is achieved with directional couplers that rely on transition regions where the waveguides are adiabatically bent to suppress back-reflection. We present a novel, compact approach to introducing guided mode coupling. By leveraging multimodal domain walls between microwave topological photonic crystals, we use the photonic-spin-conservation to suppress back-reflection while relaxing the topological protection of the valley degree of freedom to implement tunable beam splitting. Rapid advancements in chip-scale topological photonics suggest that the proposed simultaneous utilization of multiple topological degrees of freedom could benefit the development of novel photonic computing platforms

    Deregulation of HDAC5 by Viral Interferon Regulatory Factor 3 Plays an Essential Role in Kaposi's Sarcoma-Associated Herpesvirus-Induced Lymphangiogenesis.

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent for Kaposi's sarcoma (KS), which is one of the most common HIV-associated neoplasms. The endothelium is the thin layer of squamous cells where vascular blood endothelial cells (BECs) line the interior surface of blood vessels and lymphatic endothelial cells (LECs) are in direct contact with lymphatic vessels. The KS lesions contain a prominent compartment of neoplastic spindle morphology cells that are closely related to LECs. Furthermore, while KSHV can infect both LECs and BECs in vitro, its infection activates genetic programming related to lymphatic endothelial cell fate, suggesting that lymphangiogenic pathways are involved in KSHV infection and malignancy. Here, we report for the first time that viral interferon regulatory factor 3 (vIRF3) is readily detected in over 40% of KS lesions and that vIRF3 functions as a proangiogenic factor, inducing hypersprouting formation and abnormal growth in a LEC-specific manner. Mass spectrometry analysis revealed that vIRF3 interacted with histone deacetylase 5 (HDAC5), which is a signal-responsive regulator for vascular homeostasis. This interaction blocked the phosphorylation-dependent cytosolic translocation of HDAC5 and ultimately altered global gene expression in LECs but not in BECs. Consequently, vIRF3 robustly induced spindle morphology and hypersprouting formation of LECs but not BECs. Finally, KSHV infection led to the hypersprouting formation of LECs, whereas infection with a ΔvIRF3 mutant did not do so. Collectively, our data indicate that vIRF3 alters global gene expression and induces a hypersprouting formation in an HDAC5-binding-dependent and LEC-specific manner, ultimately contributing to KSHV-associated pathogenesis.IMPORTANCE Several lines of evidences indicate that KSHV infection of LECs induces pathological lymphangiogenesis and that the results resemble KS-like spindle morphology. However, the underlying molecular mechanism remains unclear. Here, we demonstrated that KSHV vIRF3 is readily detected in over 40% of various KS lesions and functions as a potent prolymphangiogenic factor by blocking the phosphorylation-dependent cytosolic translocation of HDAC5, which in turn modulates global gene expression in LECs. Consequently, vIRF3-HDAC5 interaction contributes to virus-induced lymphangiogenesis. The results of this study suggest that KSHV vIRF3 plays a crucial role in KSHV-induced malignancy
    corecore