43,577 research outputs found

    The Diffractive Interactions Working Group Summary

    Get PDF
    Diffractive interactions represent a lively domain of investigations, as confirmed by the progresses reported during the conference. We summarize the diffractive interactions session and put the new experimental data (section 1), developments in modeling diffraction (section 2) and the theoretical relations with Quantum Chromodynamics (section 3) in perspective.Comment: Summary report at DIS200

    Strong electron correlations in cobalt valence tautomers

    Full text link
    We have examined cobalt based valence tautomer molecules such as Co(SQ)2_2(phen) using density functional theory (DFT) and variational configuration interaction (VCI) approaches based upon a model Hamiltonian. Our DFT results extend earlier work by finding a reduced total energy gap (order 0.6 eV) between high temperature and low temperature states when we fully relax the coordinates (relative to experimental ones). Futhermore we demonstrate that the charge transfer picture based upon formal valence arguments succeeds qualitatively while failing quantitatively due to strong covalency between the Co 3dd orbitals and ligand pp orbitals. With the VCI approach, we argue that the high temperature, high spin phase is strongly mixed valent, with about 30 % admixture of Co(III) into the predominantly Co(II) ground state. We confirm this mixed valence through a fit to the XANES spectra. Moreover, the strong electron correlations of the mixed valent phase provide an energy lowering of about 0.2-0.3 eV of the high temperature phase relative to the low temperature one. Finally, we use the domain model to account for the extraordinarily large entropy and enthalpy values associated with the transition.Comment: 10 pages, 4 figures, submitted to J. Chem. Phy

    Spectroscopic Evidence for Anisotropic S-Wave Pairing Symmetry in MgB2

    Get PDF
    Scanning tunneling spectroscopy of superconducting MgB2_2 (Tc=39T_c = 39 K) were studied on high-density pellets and c-axis oriented films. The sample surfaces were chemically etched to remove surface carbonates and hydroxides, and the data were compared with calculated spectra for all symmetry-allowed pairing channels. The pairing potential (Δk\Delta_k) is best described by an anisotropic s-wave pairing model, with Δk=Δxysin2θk+Δzcos2θk\Delta_k = \Delta_{xy} \sin ^2 \theta_k + \Delta_z \cos ^2 \theta_k, where θk\theta_k is the angle relative to the crystalline c-axis, Δz8.0\Delta_z \sim 8.0 meV, and Δxy5.0\Delta_{xy} \sim 5.0 meV.Comment: 4 pages and 3 figures. Submitted to Physical Review Letters. Corresponding author: Nai-Chang Yeh (e-mail: [email protected]

    Scanning tunneling spectroscopic studies of the pairing state of cuprate superconductors

    Get PDF
    Quasiparticle tunneling spectra of both hole-doped (p-type) and electron-doped (n-type) cuprates are studied using a low-temperature scanning tunneling microscope. The results reveal that neither the pairing symmetry nor the pseudogap phenomenon is universal among all cuprates, and that the response of n-type cuprates to quantum impurities is drastically different from that of the p-type cuprates. The only ubiquitous features among all cuprates appear to be the strong electronic correlation and the nearest-neighbor antiferromagnetic Cu2+-Cu2+ coupling in the CuO2 planes

    Two stage superconducting quantum interference device amplifier in a high-Q gravitational wave transducer

    Full text link
    We report on the total noise from an inductive motion transducer for a gravitational-wave antenna. The transducer uses a two-stage SQUID amplifier and has a noise temperature of 1.1 mK, of which 0.70 mK is due to back-action noise from the SQUID chip. The total noise includes thermal noise from the transducer mass, which has a measured Q of 2.60 X 10^6. The noise temperature exceeds the expected value of 3.5 \mu K by a factor of 200, primarily due to voltage noise at the input of the SQUID. Noise from flux trapped on the chip is found to be the most likely cause.Comment: Accepted by Applied Physics Letters tentatively scheduled for March 13, 200

    Diversity-induced resonance

    Get PDF
    We present conclusive evidence showing that different sources of diversity, such as those represented by quenched disorder or noise, can induce a resonant collective behavior in an ensemble of coupled bistable or excitable systems. Our analytical and numerical results show that when such systems are subjected to an external subthreshold signal, their response is optimized for an intermediate value of the diversity. These findings show that intrinsic diversity might have a constructive role and suggest that natural systems might profit from their diversity in order to optimize the response to an external stimulus.Comment: 4 pages, 3 figure
    corecore