35,958 research outputs found
Assessment of density-functional approximations: Long-range correlations and self-interaction effects
The complex nature of electron-electron correlations is made manifest in the very simple but nontrivial problem of two electrons confined within a sphere. The description of highly nonlocal correlation and self-interaction effects by widely used local and semilocal exchange-correlation energy density functionals is shown to be unsatisfactory in most cases. Even the best such functionals exhibit significant errors in the Kohn-Sham potentials and density profiles
MILL-LEVEL PRICE ESTIMATES FOR U.S. COTTON QUALITY
Replaced with revised version of paper 02/11/04.Demand and Price Analysis,
Dynamical Exchanges in Facilitated Models of Supercooled liquids
We investigate statistics of dynamical exchange events in coarse--grained
models of supercooled liquids in spatial dimensions , 2, and 3. The
models, based upon the concept of dynamical facilitation, capture generic
features of statistics of exchange times and persistence times. Here,
distributions for both times are related, and calculated for cases of strong
and fragile glass formers over a range of temperatures. Exchange time
distributions are shown to be particularly sensitive to the model parameters
and dimensions, and exhibit more structured and richer behavior than
persistence time distributions. Mean exchange times are shown to be Arrhenius,
regardless of models and spatial dimensions. Specifically, , with being the excitation concentration. Different dynamical
exchange processes are identified and characterized from the underlying
trajectories. We discuss experimental possibilities to test some of our
theoretical findings.Comment: 11 pages, 14 figures, minor corrections made, paper published in
Journal of Chemical Physic
Investigation of beauty production and parton shower effects at LHC
We present hadron-level predictions from the Monte Carlo generator Cascade
and parton level calculations of open b quark, b-flavored hadron and inclusive
b-jet production in the framework of the kt-factorization QCD approach for the
LHC energies. The unintegrated gluon densities in a proton are determined using
the CCFM evolution equation and the Kimber-Martin-Ryskin (KMR) prescription.
Our predictions are compared with the first data taken by the CMS and LHCb
collaborations at 7 TeV. We study the theoretical uncertainties of our
calculations and investigate the effects coming from parton showers in initial
and final states. The special role of initial gluon transverse momenta in
description of the data is pointed out.Comment: 19 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1105.507
Escape from a metastable well under a time-ramped force
Thermally activated escape of an over-damped particle from a metastable well
under the action of a time-ramped force is studied. We express the mean first
passage time (MFPT) as the solution to a partial differential equation, which
we solve numerically for a model case. We discuss two approximations of the
MFPT, one of which works remarkably well over a wide range of loading rates,
while the second is easy to calculate and can provide a valuable first
estimate.Comment: 9 pages, including 2 figure
Spinor Dynamics in an Antiferromagnetic Spin-1 Condensate
We observe coherent spin oscillations in an antiferromagnetic spin-1
Bose-Einstein condensate of sodium. The variation of the spin oscillations with
magnetic field shows a clear signature of nonlinearity, in agreement with
theory, which also predicts anharmonic oscillations near a critical magnetic
field. Measurements of the magnetic phase diagram agree with predictions made
in the approximation of a single spatial mode. The oscillation period yields
the best measurement to date of the sodium spin-dependent interaction
coefficient, determining that the difference between the sodium spin-dependent
s-wave scattering lengths is Bohr radii.Comment: 5 pages, 2 figures. Changes: added reference, minor correction
Prompt photon hadroproduction at high energies in off-shell gluon-gluon fusion
The amplitude for production of a single photon associated with quark pair in
the fusion of two off-shell gluons is calculated. The matrix element found is
applied to the inclusive prompt photon hadroproduction at high energies in the
framework of kt-factorization QCD approach. The total and differential cross
sections are calculated in both central and forward pseudo-rapidity regions.
The conservative error analisys is performed. We used the unintegrated gluon
distributions in a proton which were obtained from the full CCFM evolution
equation as well as from the Kimber-Martin-Ryskin prescription. Theoretical
results were compared with recent experimental data taken by the D0 and CDF
collaborations at Fermilab Tevatron. Theoretical predictions for the LHC
energies are given.Comment: 32 pages, 18 figure
Tripartite Entanglement in Noninertial Frame
The tripartite entanglement is examined when one of the three parties moves
with a uniform acceleration with respect to other parties. As Unruh effect
indicates, the tripartite entanglement exhibits a decreasing behavior with
increasing the acceleration. Unlike the bipartite entanglement, however, the
tripartite entanglement does not completely vanish in the infinite acceleration
limit. If the three parties, for example, share the Greenberger-Horne-Zeilinger
or W-state initially, the corresponding -tangle, one of the measures for
tripartite entanglement, is shown to be or 0.176 in this
limit, respectively. This fact indicates that the tripartite quantum
information processing may be possible even if one of the parties approaches to
the Rindler horizon. The physical implications of this striking result are
discussed in the context of black hole physics.Comment: 19 pages, 5 figure
Large thermomagnetic effects in weakly disordered Heisenberg chains
The interplay of different scattering mechanisms can lead to novel effects in
transport. We show theoretically that the interplay of weak impurity and
Umklapp scattering in spin-1/2 chains leads to a pronounced dip in the magnetic
field dependence of the thermal conductivity at a magnetic field . In sufficiently clean samples, the reduction of the magnetic
contribution to heat transport can easily become larger than 50% and the effect
is predicted to exist even in samples with a large exchange coupling, J >> B,
where the field-induced magnetization is small. Qualitatively, our theory might
explain dips at observed in recent heat transport measurements on
copper pyrazine dinitrate, but a fully quantitative description is not possible
within our model.Comment: 5 pages, 2 figure
TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions
Transverse-momentum-dependent distributions (TMDs) are central in high-energy
physics from both theoretical and phenomenological points of view. In this
manual we introduce the library, TMDlib, of fits and parameterisations for
transverse-momentum-dependent parton distribution functions (TMD PDFs) and
fragmentation functions (TMD FFs) together with an online plotting tool,
TMDplotter. We provide a description of the program components and of the
different physical frameworks the user can access via the available
parameterisations.Comment: version 2, referring to TMDlib 1.0.2 - comments and references adde
- …