34,619 research outputs found

    Strong gravitational lensing in a squashed Kaluza-Klein black hole spacetime

    Full text link
    We investigate the strong gravitational lensing in a Kaluza-Klein black hole with squashed horizons. We find the size of the extra dimension imprints in the radius of the photon sphere, the deflection angle, the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the Galaxy can be described by this metric, we estimated the numerical values of the coefficients and observables for gravitational lensing in the strong field limit.Comment: 13pages, 5 figures, Final version appeared in PR

    Z boson production in proton-lead collisions at the LHC accounting for transverse momenta of initial partons

    Full text link
    We perform a calculation of inclusive ZZ boson production in proton-lead collisions at the LHC taking into account the transverse momenta of the initial partons. We use the framework of kTk_T-factorization combining transverse momentum dependent parton distributions (TMDs) with off-shell matrix elements. In order to do it we need to construct appropriate TMDs for lead nuclei which is done using the parton branching method. Our computations are compared with data from CMS taken at s=5.02\sqrt{s}=5.02 TeV. The results are in good agreement with the measurements especially the transverse momentum distribution of the ZZ boson.Comment: 17 pages, 12 figure

    Structural and Correlation Effects in the Itinerant Insulating Antiferromagnetic Perovskite NaOsO3

    Full text link
    The orthorhombic perovskite NaOsO3 undergoes a continuous metal-insulator transition (MIT), accompanied by antiferromagnetic (AFM) order at T_N=410 K, suggested to be an example of the rare Slater (itinerant) MIT. We study this system using ab initio and related methods, focusing on the origin and nature of magnetic ordering and the MIT. The rotation and tilting of OsO6 octahedra in the GdFeO3 structure result in moderate narrowing the band width of the t_{2g} manifold, but sufficient to induce flattening of bands and AFM order within the local spin density approximation (LSDA), where it remains metallic but with a deep pseudogap. Including on-site Coulomb repulsion U, at U_c ~2 eV a MIT occurs only in the AFM state. Effects of spin-orbit coupling (SOC) on the band structure seem minor as expected for a half-filled t2g3t_{2g}^{3} shell, but SOC doubles the critical value U_c necessary to open a gap and also leads to large magnetocrystalline energy differences in spite of normal orbital moments no greater than 0.1ÎĽB\mu_B. Our results are consistent with a Slater MIT driven by magnetic order, induced by a combination of structurally-induced band narrowing and moderate Coulomb repulsion, with SOC necessary for a full picture. Strong p-d hybridization reduces the moment, and when bootstrapped by the reduced Hund's rule coupling (proportional to the moment) gives a calculated moment of ~1 ÎĽB\mu_B, consistent with the observed moment and only a third of the formal d3d^3 value. We raise and discuss one important question: since this AFM ordering is at q=0 (in the 20 atom cell) where nesting is a moot issue, what is the microscopic driving force for ordering and the accompanying MIT?Comment: 9 page

    Spectra and positions of galactic gamma-ray sources

    Get PDF
    The UCSD/MIT Hard X-Ray and Low Energy Gamma-Ray Experiment aboard HEAO-1 scanned the galactic center region during three epochs in 1977 and 1978 from 13 to 180 keV. The results are presented from the scanning epoch of 1978 September. Twenty-two known 2 to 10 keV source positions were necessary for an acceptable fit to the data. The spectra of the 16 strongest, least confused sources are all consistent with power laws with photon spectral indices ranging from 2.1 to 7.2. Acceptable fits to thermal bremsstrahlung models are also possible for most sources. No one source in this survey can be extrapolated to higher energy to match the intensity of the gamma-ray continuum as measured by HEAO-1 large field of view detectors, which implies that the continuum is a composite of contributions from a number of sources

    NRG for the bosonic single-impurity Anderson model: Dynamics

    Full text link
    The bosonic single-impurity Anderson model (B-SIAM) is studied to understand the local dynamics of an atomic quantum dot (AQD) coupled to a Bose-Einstein condensation (BEC) state, which can be implemented to probe the entanglement and the decoherence of a macroscopic condensate. Our recent approach of the numerical renormalization group (NRG) calculation for the B-SIAM revealed a zero-temperature phase diagram, where a Mott phase with local depletion of normal particles is separated from a BEC phase with enhanced density of the condensate. As an extension of the previous work, we present the calculations of the local dynamical quantities of the B-SIAM which reinforce our understanding of the physics in the Mott and the BEC phases.Comment: 12 pages, 13 figure

    Characteristics of Feedback that Influence Student Confidence and Performance during Mathematical Modeling

    Get PDF
    This study focuses on characteristics of written feedback that influence students’ performance and confidence in addressing the mathematical complexity embedded in a Model-Eliciting Activity (MEA). MEAs are authentic mathematical modeling problems that facilitate students’ iterative development of solutions in a realistic context. We analyzed 132 first-year engineering students’ confidence levels and mathematical model scores on aMEA(pre and post feedback), along with teaching assistant feedback given to the students. The findings show several examples of affective and cognitive feedback that students reported that they used to revise their models. Students’ performance and confidence in developing mathematical models can be increased when they are in an environment where they iteratively develop models based on effective feedback

    Escape from a metastable well under a time-ramped force

    Full text link
    Thermally activated escape of an over-damped particle from a metastable well under the action of a time-ramped force is studied. We express the mean first passage time (MFPT) as the solution to a partial differential equation, which we solve numerically for a model case. We discuss two approximations of the MFPT, one of which works remarkably well over a wide range of loading rates, while the second is easy to calculate and can provide a valuable first estimate.Comment: 9 pages, including 2 figure

    Standing wave oscillations in binary mixture convection: from onset via symmetry breaking to period doubling into chaos

    Full text link
    Oscillatory solution branches of the hydrodynamic field equations describing convection in the form of a standing wave (SW) in binary fluid mixtures heated from below are determined completely for several negative Soret coefficients. Galerkin as well as finite-difference simulations were used. They were augmented by simple control methods to obtain also unstable SW states. For sufficiently negative Soret coefficients unstable SWs bifurcate subcritically out of the quiescent conductive state. They become stable via a saddle-node bifurcation when lateral phase pinning is exerted. Eventually their invariance under time-shift by half a period combined with reflexion at midheight of the fluid layer gets broken. Thereafter they terminate by undergoing a period-doubling cascade into chaos
    • …
    corecore