826 research outputs found

    Sediment transport rate-based model for rainfall-induced soil erosion

    Get PDF
    http://www.sciencedirect.com/science/article/B6VCG-4TP7HC2-1/2/2a6275ceb0176f80cedfb5efe5ef248

    Cooperative Carbon Dioxide Adsorption in Alcoholamine- and Alkoxyalkylamine-Functionalized Metal-Organic Frameworks.

    Get PDF
    A series of structurally diverse alcoholamine- and alkoxyalkylamine-functionalized variants of the metal-organic framework Mg2 (dobpdc) are shown to adsorb CO2 selectively via cooperative chain-forming mechanisms. Solid-state NMR spectra and optimized structures obtained from van der Waals-corrected density functional theory calculations indicate that the adsorption profiles can be attributed to the formation of carbamic acid or ammonium carbamate chains that are stabilized by hydrogen bonding interactions within the framework pores. These findings significantly expand the scope of chemical functionalities that can be utilized to design cooperative CO2 adsorbents, providing further means of optimizing these powerful materials for energy-efficient CO2 separations

    Water Enables Efficient CO2 Capture from Natural Gas Flue Emissions in an Oxidation-Resistant Diamine-Appended Metal-Organic Framework.

    Get PDF
    Supported by increasingly available reserves, natural gas is achieving greater adoption as a cleaner-burning alternative to coal in the power sector. As a result, carbon capture and sequestration from natural gas-fired power plants is an attractive strategy to mitigate global anthropogenic CO2 emissions. However, the separation of CO2 from other components in the flue streams of gas-fired power plants is particularly challenging due to the low CO2 partial pressure (∼40 mbar), which necessitates that candidate separation materials bind CO2 strongly at low partial pressures (≤4 mbar) to capture ≥90% of the emitted CO2. High partial pressures of O2 (120 mbar) and water (80 mbar) in these flue streams have also presented significant barriers to the deployment of new technologies for CO2 capture from gas-fired power plants. Here, we demonstrate that functionalization of the metal-organic framework Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) with the cyclic diamine 2-(aminomethyl)piperidine (2-ampd) produces an adsorbent that is capable of ≥90% CO2 capture from a humid natural gas flue emission stream, as confirmed by breakthrough measurements. This material captures CO2 by a cooperative mechanism that enables access to a large CO2 cycling capacity with a small temperature swing (2.4 mmol CO2/g with ΔT = 100 °C). Significantly, multicomponent adsorption experiments, infrared spectroscopy, magic angle spinning solid-state NMR spectroscopy, and van der Waals-corrected density functional theory studies suggest that water enhances CO2 capture in 2-ampd-Mg2(dobpdc) through hydrogen-bonding interactions with the carbamate groups of the ammonium carbamate chains formed upon CO2 adsorption, thereby increasing the thermodynamic driving force for CO2 binding. In light of the exceptional thermal and oxidative stability of 2-ampd-Mg2(dobpdc), its high CO2 adsorption capacity, and its high CO2 capture rate from a simulated natural gas flue emission stream, this material is one of the most promising adsorbents to date for this important separation

    Diffusive Ionization of Relativistic Hydrogen-Like Atom

    Full text link
    Stochastic ionization of highly excited relativistic hydrogenlike atom in the monochromatic field is investigated. A theoretical analisis of chaotic dynamics of the relativistic electron based on Chirikov criterion is given for the cases of one- and three-dimensional atoms. Critical value of the external field is evaluated analitically. The diffusion coefficient and ionization time are calculated.Comment: 13 pages, latex, no figures, submitted to PR

    Case Report Sarcoidosis Associated with Oxaliplatin-Based Chemotherapy for Colorectal Cancer

    Get PDF
    Acute lung injury occasionally occurs after chemotherapy, but pulmonary toxicities by oxaliplatin-based chemotherapy have rarely been identified. A 76-year-old female with rectosigmoid colon cancer presented with ongoing dyspnea after the eighth cycle of standard chemotherapy (5-fluorouracil, sodium folinic acid, and oxaliplatin: FOLFOX). Nodular consolidation progressed despite antibiotics and BAL fluid analysis was compatible with the diagnosis of sarcoidosis. Corticosteroid therapy rapidly improved the symptoms and radiographic findings. We report this first case of secondary sarcoidosis related to FOLFOX therapy with review of references

    Big, Fast Vortices in the d-RVB theory of High Temperature Superconductivity

    Full text link
    The effect of proximity to a Mott insulating phase on the superflow properties of a d-wave superconductor is studied using the slave boson-U(1) gauge theory model. The model has two limits corresponding to superconductivity emerging either out of a 'renormalized fermi liquid' or out of a non-fermi-liquid regime. Three crucial physical parameters are identified: the size of the vortex \textit{as determined from the supercurrent it induces;} the coupling of the superflow to the quasiparticles and the 'nondissipative time derivative' term. As the Mott phase is approached, the core size as defined from the supercurrent diverges, the coupling between superflow and quasiparticles vanishes, and the magnitude of the nondissipative time derivative dramatically increases. The dissipation due to a moving vortex is found to vary as the third power of the doping. The upper critical field and the size of the critical regime in which paraconductivity may be observed are estimated, and found to be controlled by the supercurrent length scale

    KRAS Activation and over-expression of SIRT1/BCL6 Contributes to the Pathogenesis of Endometriosis and Progesterone Resistance

    Get PDF
    Endometriosis is an inflammatory condition that is associated with progesterone resistance and cell proliferation, resulting in pain, infertility and pregnancy loss. We previously demonstrated phosphorylation of STAT3 in eutopic endometrium of infertile women with this disorder leading to over-expression of the oncogene BCL6 and stabilization of hypoxia-induced factor 1 alpha (HIF-1α). Here we report coordinated activation of KRAS and over-expression of Sirtuin 1 (SIRT1), a histone deacetylase and gene silencer, in the eutopic endometrium from women with endometriosis throughout the menstrual cycle. The mice with conditional activation of KRAS in the PGR positive cells reveal an increase of SIRT1 expression in the endometrium compared to control mice. The expression of progesterone receptor target genes including the Indian Hedgehog pathway genes are significantly down-regulated in the mutant mice. SIRT1 co-localizes with BCL6 in the nuclei of affected individuals and both proteins bind to and suppress the promoter of GLI1, a critical mediator of progesterone action in the Indian Hedgehog pathway, by ChIP analysis. In eutopic endometrium, GLI1 expression is reduced in women with endometriosis. Together, these data suggest that KRAS, SIRT1 and BCL6 are coordinately over-expressed in eutopic endometrium of women with endometriosis and likely participate in the pathogenesis of endometriosis

    Modeling Severe Fever with Thrombocytopenia Syndrome Virus Infection in Golden Syrian Hamsters: Importance of STAT2 in Preventing Disease and Effective Treatment with Favipiravir

    Get PDF
    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease endemic in parts of Asia. The etiologic agent, SFTS virus (SFTSV; family Bunyaviridae, genus Phlebovirus) has caused significant morbidity and mortality in China, South Korea, and Japan, with key features of disease being intense fever, thrombocytopenia, and leukopenia. Case fatality rates are estimated to be in the 30% range, and no antivirals or vaccines are approved for use for treatment and prevention of SFTS. There is evidence that in human cells, SFTSV sequesters STAT proteins in replication complexes, thereby inhibiting type I interferon signaling. Here, we demonstrate that hamsters devoid of functional STAT2 are highly susceptible to as few as 10 PFU of SFTSV, with animals generally succumbing within 5 to 6 days after subcutaneous challenge. The disease included marked thrombocytopenia and inflammatory disease characteristic of the condition in humans. Infectious virus titers were present in the blood and most tissues 3 days after virus challenge, and severe inflammatory lesions were found in the spleen and liver samples of SFTSV-infected hamsters. We also show that SFTSV infection in STAT2 knockout (KO) hamsters is responsive to favipiravir treatment, which protected all animals from lethal disease and reduced serum and tissue viral loads by 3 to 6 orders of magnitude. Taken together, our results provide additional insights into the pathogenesis of SFTSV infection and support the use of the newly described STAT2 KO hamster model for evaluation of promising antiviral therapies. IMPORTANCE Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral disease for which there are currently no therapeutic options or available vaccines. The causative agent, SFTS virus (SFTSV), is present in China, South Korea, and Japan, and infections requiring medical attention result in death in as many as 30% of the cases. Here, we describe a novel model of SFTS in hamsters genetically engineered to be deficient in a protein that helps protect humans and animals against viral infections. These hamsters were found to be susceptible to SFTSV and share disease features associated with the disease in humans. Importantly, we also show that SFTSV infection in hamsters can be effectively treated with a broad-spectrum antiviral drug approved for use in Japan. Our findings suggest that the new SFTS model will be an excellent resource to better understand SFTSV infection and disease as well as a valuable tool for evaluating promising antiviral drugs

    Familial Creutzfeldt-Jakob Disease with V180I Mutation

    Get PDF
    Creutzfeldt-Jakob disease (CJD) is an uncommon neurodegenerative disorder with an incidence of 1 per 1000,000 per year typically characterized by rapidly progressive dementia, ataxia, myoclonus and behavioral changes. Genetic prion diseases, which develop due to a mutations in the prion protein gene (PRNP), account for an estimated 10 to 15% of all CJD cases. We report a 75-yr-old woman with familial CJD carrying a V180I mutation which features late onset, slow progression, no periodic sharp wave complexes on electroencephalography, and extensive cortical ribboning with spared the cerebellum and the medial occipital lobes posterior to the parieto-occipital sulcus on MRI. To our knowledge, this is the first documented case of a point mutation at codon 180 in South Korea
    • …
    corecore