7,411 research outputs found

    Au-SN Flip-Chip Solder Bump for Microelectronic and Optoelectronic Applications

    Get PDF
    As an alternative to the time-consuming solder pre-forms and pastes currently used, a co-electroplating method of eutectic Au-Sn alloy was used in this study. Using a co-electroplating process, it was possible to plate the Au-Sn solder directly onto a wafer at or near the eutectic composition from a single solution. Two distinct phases, Au5Sn and AuSn, were deposited at a composition of 30at.%Sn. The Au-Sn flip-chip joints were formed at 300 and 400 degrees without using any flux. In the case where the samples were reflowed at 300 degrees, only an (Au,Ni)3Sn2 IMC layer formed at the interface between the Au-Sn solder and Ni UBM. On the other hand, two IMC layers, (Au,Ni)3Sn2 and (Au,Ni)3Sn, were found at the interfaces of the samples reflowed at 400 degrees. As the reflow time increased, the thickness of the (Au,Ni)3Sn2 and (Au,Ni)3Sn IMC layers formed at the interface increased and the eutectic lamellae in the bulk solder coarsened.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Digital image correlation in dental materials and related research: A review

    Get PDF
    OBJECTIVE: Digital image correlation (DIC) is a non-contact image processing technique for full-field strain measurement. Although DIC has been widely used in engineering and biomechanical fields, it is in the spotlight only recently in dental materials. Therefore, the purpose of this review paper is introducing the working principle of the DIC technique with some modifications and providing further potential applications in various dental materials and related fields. METHODS: The accuracy of the algorithm depending on the environmental characteristics of the DIC technique, as well as the advantages and disadvantages of strain measurement using optical measurements, have been elaborated in dental materials and related fields. Applications to those researches have been classified into the following categories: shrinkage behavior of light-cured resin composite, resin-tooth interface, mechanical properties of tooth structure, crack extension and elastic properties of dental materials, and deformation of dental restoration and prosthesis. This classification and discussion were performed using literature survey and review based on numerous papers in the international journals published over the past 20 years. The future directions for predicting the precise deformation of dental materials under various environments, as well as limitations of the DIC technique, was presented in this review. RESULTS: The DIC technique was demonstrated as a more effective tool to measure full-field polymerization shrinkage of composite resin, even in a simulated clinical condition over the existing methods. Moreover, the DIC combined with other technologies can be useful to evaluate the mechanical behavior of material-tooth interface, dentine structure and restorative and prosthetic materials with high accuracy. Three-dimensional DIC using two cameras extended the measurement range in-plane to out-of-plane, enabling measure of the strain directly on the surface of dental restorations or prosthesis. SIGNIFICANCE: DIC technique is a potential tool for measuring and predicting the full-field deformation/strain of dental materials and actual prostheses in diverse clinical conditions. The versatility of DIC can replace the existing complex sensor devices in those studies

    Solution-Processed Vertically Stacked Complementary Organic Circuits with Inkjet-Printed Routing

    Get PDF
    The fabrication and measurements of solutionā€processed vertically stacked complementary organic fieldā€effect transistors (FETs) with a high static noise margin (SNM) are reported. In the device structure, a bottomā€gate pā€type organic FET (PFET) is vertically integrated on a topā€gate nā€type organic FET (NFET) with the gate shared inā€between. A new strategy has been proposed to maximize the SNM by matching the driving strengths of the PFET and the NFET by independently adjusting the dielectric capacitance of each type of transistor. Using ideally balanced inverters with the transistorā€onā€transistor structure, the first examples of universal logic gates by inkjetā€printed routing are demonstrated. It is believed that this work can be extended to largeā€scale complementary integrated circuits with a high transistor density, simpler routing path, and high yield.1196Ysciescopu

    Expansion of Cell Range with Geometric Information of Pico Cell for Maximum Sum Rate in Heterogeneous Networks

    Get PDF
    In this paper, taking the positions of pico-cell base stations (PBSs) into consideration, a scheme of cell range expansion (CRE) for maximum sum rate is addressed in heterogeneous multi-input multi-output multi-user wireless networks. The optimal CRE bias obtained numerically by the proposed CRE scheme with inter-cell interference coordination (ICIC) allows us to maximize the sum rate while successfully maintaining the load balance between the macrocell base station and PBSs. Numerical results confirm that the proposed CRE scheme with ICIC can provide higher sum rate than conventional schemes and balanced load

    Selective-Area Growth of Heavily \u3cem\u3en\u3c/em\u3eā€“Doped GaAs Nanostubs on Si(001) by Molecular Beam Epitaxy

    Get PDF
    Using an aspect ratio trapping technique, we demonstrate molecular beam epitaxy of GaAs nanostubs on Si(001) substrates. Nanoholes in a SiO2 mask act as a template for GaAs-on-Si selective-area growth(SAG) of nanostubs 120ā€‰nm tall and ā‰¤100ā€‰nm in diameter. We investigate the influence of growthparameters including substrate temperature and growth rate on SAG. Optimizing these parameters results in complete selectivity with GaAsgrowth only on the exposed Si(001). Due to the confined-geometry, strain and defects in the GaAs nanostubs are restricted in lateral dimensions, and surface energy is further minimized. We assess the electrical properties of the selectively grownGaAs nanostubs by fabricating heterogeneous p+ā€“Si/n+ā€“GaAs pā€“n diodes

    BKB_K using HYP-smeared staggered fermions in Nf=2+1N_f=2+1 unquenched QCD

    Full text link
    We present results for kaon mixing parameter BKB_K calculated using HYP-smeared improved staggered fermions on the MILC asqtad lattices. We use three lattice spacings (aā‰ˆ0.12a\approx 0.12, 0.090.09 and 0.06ā€…ā€Š0.06\;fm), ten different valence quark masses (mā‰ˆms/10āˆ’msm\approx m_s/10-m_s), and several light sea-quark masses in order to control the continuum and chiral extrapolations. We derive the next-to-leading order staggered chiral perturbation theory (SChPT) results necessary to fit our data, and use these results to do extrapolations based both on SU(2) and SU(3) SChPT. The SU(2) fitting is particularly straightforward because parameters related to taste-breaking and matching errors appear only at next-to-next-to-leading order. We match to the continuum renormalization scheme (NDR) using one-loop perturbation theory. Our final result is from the SU(2) analysis, with the SU(3) result providing a (less accurate) cross check. We find BK(NDR,Ī¼=2GeV)=0.529Ā±0.009Ā±0.032B_K(\text{NDR}, \mu = 2 \text{GeV}) = 0.529 \pm 0.009 \pm 0.032 and B^K=BK(RGI)=0.724Ā±0.012Ā±0.043\hat{B}_K =B_K(\text{RGI})= 0.724 \pm 0.012 \pm 0.043, where the first error is statistical and the second systematic. The error is dominated by the truncation error in the matching factor. Our results are consistent with those obtained using valence domain-wall fermions on lattices generated with asqtad or domain-wall sea quarks.Comment: 37 pages, 31 figures, most updated versio

    Seed-layer mediated orientation evolution in dielectric Bi-Zn-Ti-Nb-O thin films

    Get PDF
    Highly (hhh) -oriented pyrochlore Bi-Zn-Ti-Nb-O (BZTN) thin films were fabricated via metal-organic decomposition using orientation template layers. The preferred orientation was ascribed to the interfacial layer, the lattice parameter of which is similar to BZTN. High-resolution transmission electron microscopy supported that the interfacial layer consists of Bi and Pt. The (hhh) -oriented thin films exhibited a highly insulating nature enabling feasible applications in electronic devices, particularly voltage tunable application. The BZTN thin films did not show any apparent dielectric anisotropy and the slightly enhanced dielectric properties were discussed in connection to the internal stress and the grain boundary effect. Ā© 2007 American Institute of Physics

    Altered resting-state connectivity in subjects at ultra-high risk for psychosis: an fMRI study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals at ultra-high risk (UHR) for psychosis have self-disturbances and deficits in social cognition and functioning. Midline default network areas, including the medial prefrontal cortex and posterior cingulate cortex, are implicated in self-referential and social cognitive tasks. Thus, the neural substrates within the default mode network (DMN) have the potential to mediate self-referential and social cognitive information processing in UHR subjects.</p> <p>Methods</p> <p>This study utilized functional magnetic resonance imaging (fMRI) to investigate resting-state DMN and task-related network (TRN) functional connectivity in 19 UHR subjects and 20 matched healthy controls. The bilateral posterior cingulate cortex was selected as a seed region, and the intrinsic organization for all subjects was reconstructed on the basis of fMRI time series correlation.</p> <p>Results</p> <p>Default mode areas included the posterior/anterior cingulate cortices, the medial prefrontal cortex, the lateral parietal cortex, and the inferior temporal region. Task-related network areas included the dorsolateral prefrontal cortex, supplementary motor area, the inferior parietal lobule, and middle temporal cortex. Compared to healthy controls, UHR subjects exhibit hyperconnectivity within the default network regions and reduced anti-correlations (or negative correlations nearer to zero) between the posterior cingulate cortex and task-related areas.</p> <p>Conclusions</p> <p>These findings suggest that abnormal resting-state network activity may be related with the clinical features of UHR subjects. Neurodevelopmental and anatomical alterations of cortical midline structure might underlie altered intrinsic networks in UHR subjects.</p
    • ā€¦
    corecore