462 research outputs found
Recommended from our members
Quorum Sensing System Affects the Plant Growth Promotion Traits of Serratia fonticola GS2.
Quorum sensing (QS) enables bacteria to organize gene expression programs, thereby coordinating collective behaviors. It involves the production, release, and population-wide detection of extracellular signaling molecules. The cellular processes regulated by QS in bacteria are diverse and may be used in mutualistic coordination or in response to changing environmental conditions. Here, we focused on the influence of the QS-dependent genes of our model bacterial strain Serratia fonticola GS2 on potential plant growth promoting (PGP) activities including indole-3-acetic acid (IAA) production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, and biofilm formation. Based on genomic and phenotypic experimental data we identified and investigated the function of QS genes in the genome of the model strain. Our gene deletion study confirmed the biological functionality of the QS auto-inducer (gloI) and receptor (gloR) on potential PGP activities of GS2. A transcriptomic approach was also undertaken to understand the role of QS genes in regulation of genes primarily involved in PGP activities (IAA, ACC deaminase activity, and biofilm formation). Both transcriptomic and phenotypic data revealed that the QS-deletion mutants had considerably less PGP activities, as compared to the wild type. In addition, in vivo plant experiments showed that plants treated with GS2 had significantly higher growth rates than plants treated with the QS-deletion mutants. Overall, our results showed how QS-dependent genes regulate the potential PGP activities of GS2. This information may be helpful in understanding the relationship between QS-dependent genes and the PGP activity of bacteria, which aid in the production of practical bio-fertilizers for plant growth promotion
Increased O-GlcNAcylation of Drp1 by amyloid-beta promotes mitochondrial fission and dysfunction in neuronal cells.
As a dynamic organelle, mitochondria continuously fuse and divide with adjacent mitochondria. Imbalance in mitochondria dynamics leads to their dysfunction, which implicated in neurodegenerative diseases. However, how mitochondria alteration and glucose defect contribute to pathogenesis of Alzheimer's disease (AD) is still largely unknown. Dynamin-related protein 1 (Drp1) is an essential regulator for mitochondria fission. Among various posttranslational modifications, O-GlcNAcylation plays a role as a sensor for nutrient and oxidative stress. In this study, we identified that Drp1 is regulated by O-GlcNAcylation in AD models. Treatment of Aβ as well as PugNAc resulted in mitochondrial fragmentation in neuronal cells. Moreover, we found that AD mice brain exhibits an upregulated Drp1 O-GlcNAcylation. However, depletion of OGT inhibited Drp1 O-GlcNAcylation in Aβ-treated cells. In addition, overexpression of O-GlcNAc defective Drp1 mutant (T585A and T586A) decreased Drp1 O-GlcNAcylation and Aβ-induced mitochondria fragmentation. Taken together, these finding suggest that Aβ regulates mitochondrial fission by increasing O-GlcNAcylation of Drp1
Heterogeneous nuclear ribonucleoprotein A1 post-transcriptionally regulates Drp1 expression in neuroblastoma cells.
Excessive mitochondrial fission is associated with the pathogenesis of neurodegenerative diseases. Dynamin-related protein 1 (Drp1) possesses specific fission activity in the mitochondria and peroxisomes. Various post-translational modifications of Drp1 are known to modulate complex mitochondrial dynamics. However, the post-transcriptional regulation of Drp1 remains poorly understood. Here, we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) regulates Drp1 expression at the post-transcriptional level. hnRNP A1 directly interacts with Drp1 mRNA at its 3'UTR region, and enhances translation potential without affecting mRNA stability. Down-regulation of hnRNP A1 induces mitochondrial elongation by reducing Drp1 expression. Moreover, depletion of hnRNP A1 suppresses 3-NP-mediated mitochondrial fission and dysfunction. In contrast, over-expression of hnRNP A1 promotes mitochondrial fragmentation by increasing Drp1 expression. Additionally, hnRNP A1 significantly exacerbates 3-NP-induced mitochondrial dysfunction and cell death in neuroblastoma cells. Interestingly, treatment with 3-NP induces subcellular translocation of hnRNP A1 from the nucleus to the cytoplasm, which accelerates the increase in Drp1 expression in hnRNP A1 over-expressing cells. Collectively, our findings suggest that hnRNP A1 controls mitochondrial dynamics by post-transcriptional regulation of Drp1.This research was supported by a grant of the Korea–UK Collaborative Alzheimer's Disease Research Project by Ministry of Health & Welfare, Republic of Korea (A120196, HI14C1913) and was supported by the Basic Science Research Program of the National Research Foundation, Republic of Korea (2014R1A2A1A11053431). We are grateful to Wellcome Trust, Principal Research Fellowship to DCR (095317/Z/11/Z)This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.bbagrm.2015.10.01
The effect of meditation on brain structure: cortical thickness mapping and diffusion tensor imaging
A convergent line of neuroscientific evidence suggests that meditation alters the functional and structural plasticity of distributed neural processes underlying attention and emotion. The purpose of this study was to examine the brain structural differences between a well-matched sample of long-term meditators and controls. We employed whole-brain cortical thickness analysis based on magnetic resonance imaging, and diffusion tensor imaging to quantify white matter integrity in the brains of 46 experienced meditators compared with 46 matched meditation-naïve volunteers. Meditators, compared with controls, showed significantly greater cortical thickness in the anterior regions of the brain, located in frontal and temporal areas, including the medial prefrontal cortex, superior frontal cortex, temporal pole and the middle and interior temporal cortices. Significantly thinner cortical thickness was found in the posterior regions of the brain, located in the parietal and occipital areas, including the postcentral cortex, inferior parietal cortex, middle occipital cortex and posterior cingulate cortex. Moreover, in the region adjacent to the medial prefrontal cortex, both higher fractional anisotropy values and greater cortical thickness were observed. Our findings suggest that long-term meditators have structural differences in both gray and white matter
Development of a wireless displacement measurement system using acceleration responses
Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system.open3
Transparent, low resistance, and flexible amorphous ZnO-doped In2O3 Anode Grown on a PES Substrate
Transparent and low resistance amorphous ZnO-doped In2O3 (IZO) anode films were grown by radio-frequency (rf) sputtering on an organic passivated polyethersulfone (PES) substrate for use in flexible organic light-emitting diodes (OLEDs). Under optimized growth conditions, a sheet resistance of 15.2 /, average transmittance above 89% in the green range, and a root mean square roughness of 0.375 nm were obtained, even for the IZO anode film grown in a pure Ar ambient without the addition of oxygen as a reactive gas. All of the IZO anode films had an amorphous structure regardless of the rf power and the working pressure due to the low substrate temperature of 50°C and the structural stability of the amorphous IZO films. In addition, an X-ray photoelectron spectroscopy depth profile obtained for the IZO/PES showed no obvious evidence of interfacial reactions between the IZO anode and the PES substrate, except for some indiffusion of oxygen atoms from the IZO anode. Furthermore, the current-voltage-luminance of the flexible OLEDs fabricated on IZO anode was found to be critically dependent on the sheet resistance of the IZO anode.This work was supported by a Korea Research Foundation grant
funded by the Korean Government (MOEHRD: Basic Research Promotion
Fund)(KRF-2006-003-D00243) and the Ministry of Commerce,
Industry and Energy
Primary cilia mediate mitochondrial stress responses to promote dopamine neuron survival in a Parkinson’s disease model
A primary cilium is an antenna-like structure on the cell surface that plays a crucial role in sensory perception and signal transduction. Mitochondria, the ‘powerhouse’ of the cell, control cell survival, and death. The cellular ability to remove dysfunctional mitochondria through mitophagy is important for cell survival. We show here that mitochondrial stress, caused by respiratory complex inhibitors and excessive fission, robustly stimulates ciliogenesis in different types of cells including neuronal cells. Mitochondrial stress-induced ciliogenesis is mediated by mitochondrial reactive oxygen species generation, subsequent activation of AMP-activated protein kinase and autophagy. Conversely, abrogation of ciliogenesis compromises mitochondrial stress-induced autophagy, leading to enhanced cell death. In mice, treatment with mitochondrial toxin, MPTP elicits ciliary elongation and autophagy in the substantia nigra dopamine neurons. Blockade of cilia formation in these neurons attenuates MPTP-induced autophagy but facilitates dopamine neuronal loss and motor disability. Our findings demonstrate the important role of primary cilia in cellular pro-survival responses during mitochondrial stress. © 2019, The Author(s).1
Electrically Robust Single-Crystalline WTe2 Nanobelts for Nanoscale Electrical Interconnects
As the elements of integrated circuits are downsized to the nanoscale, the current Cu-based interconnects are facing limitations due to increased resistivity and decreased current-carrying capacity because of scaling. Here, the bottom-up synthesis of single-crystalline WTe2 nanobelts and low- and high-field electrical characterization of nanoscale interconnect test structures in various ambient conditions are reported. Unlike exfoliated flakes obtained by the top-down approach, the bottom-up growth mode of WTe2 nanobelts allows systemic characterization of the electrical properties of WTe2 single crystals as a function of channel dimensions. Using a 1D heat transport model and a power law, it is determined that the breakdown of WTe2 devices under vacuum and with AlOx capping layer follows an ideal pattern for Joule heating, far from edge scattering. High-field electrical measurements and self-heating modeling demonstrate that the WTe2 nanobelts have a breakdown current density approaching approximate to 100 MA cm(-2), remarkably higher than those of conventional metals and other transition-metal chalcogenides, and sustain the highest electrical power per channel length (approximate to 16.4 W cm(-1)) among the interconnect candidates. The results suggest superior robustness of WTe2 against high-bias sweep and its possible applicability in future nanoelectronics
Gate-dependent spin Hall induced nonlocal resistance and the symmetry of spin-orbit scattering in Au-clustered graphene
Engineering the electron dispersion of graphene to be spin-dependent is crucial for the realization of spin-based logic devices. Enhancing spin-orbit coupling in graphene can induce spin Hall effect, which can be adapted to generate or detect a spin current without a ferromagnet. Recently, both chemically and physically decorated graphenes have shown to exhibit large nonlocal resistance via the spin Hall and its inverse effects. However, these nonlocal transport results have raised critical debates due to the absence of field dependent Hanle curve in subsequent studies. Here, we introduce Au clusters on graphene to enhance spin-orbit coupling and employ a nonlocal geometry to study the spin Hall induced nonlocal resistance. Our results show that the nonlocal resistance highly depends on the applied gate voltage due to various current channels. However, the spin Hall induced nonlocal resistance becomes dominant at a particular carrier concentration, which is further confirmed through Hanle curves. The obtained spin Hall angle is as high as similar to 0.09 at 2 K. Temperature dependence of spin relaxation time is governed by the symmetry of spin-orbit coupling, which also depends on the gate voltage: asymmetric near the charge neutral point and symmetric at high carrier concentration. These results inspire an effective method for generating spin currents in graphene and provide important insights for the spin Hall effect as well as the symmetry of spin scattering in physically decorated graphene
- …