25 research outputs found

    Multiplex quantitative analysis of microRNA expression via exponential isothermal amplification and conformation-sensitive DNA separation

    Get PDF
    Expression profiling of multiple microRNAs (miRNAs) generally provides valuable information for understanding various biological processes. Thus, it is necessary to develop a sensitive and accurate miRNA assay suitable for multiplexing. Isothermal exponential amplification reaction (EXPAR) has received significant interest as an miRNA analysis method because of high amplification efficiency. However, EXPAR cannot be used for a broader range of applications owing to limitations such as complexity of probe design and lack of proper detection method for multiplex analysis. Here, we developed a sensitive and accurate multiplex miRNA profiling method using modified isothermal EXPAR combined with high-resolution capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP). To increase target miRNA specificity, a stem-loop probe was introduced instead of a linear probe in isothermal EXPAR to allow specific amplification of multiple miRNAs with minimal background signals. CE-SSCP, a conformation-dependent separation method, was used for detection. Since CE-SSCP eliminates the need for probes to have different lengths, easier designing of probes with uniform amplification efficiency was possible. Eight small RNAs comprising six miRNAs involved in Caenorhabditis elegans development and two controls were analyzed. The expression patterns obtained using our method were concordant with those reported in previous studies, thereby supporting the proposed method's robustness and utility.113sciescopu

    Sequencing and characterization of Varicella-Zoster virus vaccine strain SuduVax

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Varicella-zoster virus (VZV) causes chickenpox in children and shingles in older people. Currently, live attenuated vaccines based on the Oka strain are available worldwide. In Korea, an attenuated VZV vaccine has been developed from a Korean isolate and has been commercially available since 1994. Despite this long history of use, the mechanism for the attenuation of the vaccine strain is still elusive. We attempted to understand the molecular basis of attenuation mechanism by full genome sequencing and comparative genomic analyses of the Korean vaccine strain SuduVax.</p> <p>Results</p> <p>SuduVax was found to contain a genome that was 124,759 bp and possessed 74 open reading frames (ORFs). SuduVax was genetically most close to Oka strains and these Korean-Japanese strains formed a strong clade in phylogenetic trees. SuduVax, similar to the Oka vaccine strains, underwent T- > C substitution at the stop codon of ORF0, resulting in a read-through mutation to code for an extended form of ORF0 protein. SuduVax also shared certain deletion and insertion mutations in ORFs 17, 29, 56 and 60 with Oka vaccine strains and some clinical strains.</p> <p>Conclusions</p> <p>The Korean VZV vaccine strain SuduVax is genetically similar to the Oka vaccine strains. Further comparative genomic and bioinformatics analyses will help to elucidate the molecular basis of the attenuation of the VZV vaccine strains.</p

    The First Very Long Baseline Interferometry Image of 44 GHz Methanol Maser with the KVN and VERA Array (KaVA)

    Full text link
    We have carried out the first very long baseline interferometry (VLBI) imaging of 44 GHz class I methanol maser (7_{0}-6_{1}A^{+}) associated with a millimeter core MM2 in a massive star-forming region IRAS 18151-1208 with KaVA (KVN and VERA Array), which is a newly combined array of KVN (Korean VLBI Network) and VERA (VLBI Exploration of Radio Astrometry). We have succeeded in imaging compact maser features with a synthesized beam size of 2.7 milliarcseconds x 1.5 milliarcseconds (mas). These features are detected at a limited number of baselines within the length of shorter than approximately 650 km corresponding to 100 Mlambda in the uv-coverage. The central velocity and the velocity width of the 44 GHz methanol maser are consistent with those of the quiescent gas rather than the outflow traced by the SiO thermal line. The minimum component size among the maser features is ~ 5 mas x 2 mas, which corresponds to the linear size of ~ 15 AU x 6 AU assuming a distance of 3 kpc. The brightness temperatures of these features range from ~ 3.5 x 10^{8} to 1.0 x 10^{10} K, which are higher than estimated lower limit from a previous Very Large Array observation with the highest spatial resolution of ~ 50 mas. The 44 GHz class I methanol maser in IRAS 18151-1208 is found to be associated with the MM2 core, which is thought to be less evolved than another millimeter core MM1 associated with the 6.7 GHz class II methanol maser.Comment: 19 pages, 3 figure

    Transfer RNA-derived fragments in aging Caenorhabditis elegans originate from abundant homologous gene copies

    Get PDF
    © 2021, The Author(s).Small RNAs that originate from transfer RNA (tRNA) species, tRNA-derived fragments (tRFs), play diverse biological functions but little is known for their association with aging. Moreover, biochemical aspects of tRNAs limit discovery of functional tRFs by high throughput sequencing. In particular, genes encoding tRNAs exist as multiple copies throughout genome, and mature tRNAs have various modified bases, contributing to ambiguities for RNA sequencing-based analysis of tRFs. Here, we report age-dependent changes of tRFs in Caenorhabditis elegans. We first analyzed published RNA sequencing data by using a new strategy for tRNA-associated sequencing reads. Our current method used unique mature tRNAs as a reference for the sequence alignment, and properly filtered out false positive enrichment for tRFs. Our analysis successfully distinguished de novo mutation sites from differences among homologous copies, and identified potential RNA modification sites. Overall, the majority of tRFs were upregulated during aging and originated from 5′-ends, which we validated by using Northern blot analysis. Importantly, we revealed that the major source of tRFs upregulated during aging was the tRNAs with abundant gene copy numbers. Our analysis suggests that tRFs are useful biomarkers of aging particularly when they originate from abundant homologous gene copies.11Nsciescopu

    Catalytic RNA, ribozyme, and its applications in synthetic biology

    No full text
    Ribozymes are functional RNA molecules that can catalyze biochemical reactions. Since the discovery of the first catalytic RNA, various functional ribozymes (e.g., self-cleaving ribozymes, splicing ribozymes, RNase P, etc.) have been uncovered, and their structures and mechanisms have been identified. Ribozymes have the advantage of possessing features of “RNA” molecules; hence, they are highly applicable for manipulating various biological systems. To fully employ ribozymes in a broad range of biological applications in synthetic biology, a variety of ribozymes have been developed and engineered. Here, we summarize the main features of ribozymes and the methods used for engineering their functions. We also describe the past and recent efforts towards exploiting ribozymes for effective and novel applications in synthetic biology. Based on studies on their significance in biological applications till date, ribozymes are expected to advance technologies in artificial biological systems.This work was supported by the National Research Foundation of Korea (NRF) grant (NRF-2017R1C1B3012050) and the Global Research Laboratory Program (NRF-2016K1A1A2912829) funded by the Korea government (Ministry of Science and ICT). Also, this research was supported by Basic Science Research Program funded by the Ministry of Education (2018R1A6A3A11045727).Peer reviewe

    Optimization of hexanoic acid production in recombinant Escherichia coli by precise flux rebalancing

    No full text
    The aim of this study is to demonstrate that rebalancing of metabolic fluxes at acetyl-CoA branch node can substantially improve the titer and productivity of hexanoic acid in recombinant Escherichia coli strains. First, a hexanoic acid-producing E. coli strain was constructed by expressing genes encoding beta-ketothiolase (BktB) from Cupriavidus necator and acetyl-CoA transferase (ACT) from Megasphaera sp. MH in a butyric acid producer strain. Next, metabolic flux was optimized at the acetyl-CoA branch node by fine-tuning the expression level of the gene for acetyl-CoA acetyltransferase (AtoB). Four synthetic 5&apos;- untranslated regions were designed for atoB using UTR Designer to modulate the expression level of the gene. Notably, the productivity of the optimized strain (14.7 mg/L/h) was the highest among recombinant E. coli strains in literature when using a similar inoculum size for fermentation. These results show that fine-tuning the expression level of atoB is critical for production of hexanoic acid.11sciescopu
    corecore