68 research outputs found

    Correlation between hotspots and air quality in Pekanbaru-Riau, Indonesia in 2006-2007

    Get PDF
    Biomass burning is one of the main sources of air pollution in South East Asia, predominantly during the dry period between June and October each year. Sumatra and Kalimantan, Indonesia, have been identified as the regions connected to biomass burning due to their involvement in agricultural activities. In Sumatra, the Province of Riau has always been found to have had the highest number of hotspots during haze episodes. This study aims to determine the concentration of five major pollutants (PM10, SO2, NO2, CO and O3) in Riau, Indonesia, for 2006 and 2007. It will also correlate the level of air pollutants to the number of hotspots recorded, using the hotspot information system introduced by the Malaysian Centre for Remote Sensing (MACRES). Overall, the concentration of air pollutants recorded was found to increase with the number of hotspots. Nevertheless, only the concentration of PM10 during a haze episode is significantly different when compared to its concentration in non-haze conditions. In fact, in August 2006, when the highest number of hotspots was recorded the concentration of PM10 was found to increase by more than 20% from its normal concentration. The dispersion pattern, as simulated by the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), showed that the distribution of PM10 was greatly influenced by the wind direction. Furthermore, the particles had the capacity to reach the Peninsular Malaysia within 42 hours of emission from the point sources as a consequence of the South West monsoon

    Hydrological Responses to Climate and Land Use Change at Watershed Scale_ Malaysia

    Get PDF
    The hydrological effects of climate variation and land use conversion can occur at various spatial scales, but the most important sources of these changes are at the regional or watershed scale. In addition, the managerial and technical measures are primarily implemented at local and watershed scales in order to mitigate adverse impacts of human activities on the renewable resources of the watershed. Therefore, quantitative estimation of the possible hydrological consequences of potential land use and climate changes on hydrological regime at watershed scale is of tremendous importance. This paper focuses on the impacts of climate change as well as land use change on the hydrological processes of river basin based on pertinent published literature which were precisely scrutinized. The various causes, forms, and consequences of such impacts were discussed to synthesize the key findings of literature in reputable sources and to identify gaps in the knowledge where further research is required. Results indicate that the watershed-scale studies were found as a gap in tropical regions. Also, these studies are important to facilitate the application of results to real environment. Watershed scale studies are essential to measure the extent of influences made to the hydrological conditions and understanding of causes and effects of climate variation and land use conversion on hydrological cycle and water resources

    Temperature and Salinity Profiling Analysis off Sarawak Waters, Malaysia

    Get PDF
    Prime Scientific Sailing Expedition (EPSP 2009), was carried out in the South China Sea (SCS) along Sarawak waters for nine days from 20 to 29 June 2009. The main objective was to enhance physical oceanography data to support the management of marine ecosystem and other marine resources off Sarawak waters. The main purpose of this present study is to construct vertical temperature and salinity structures off Sarawak waters and to define the water properties based on differ water depths. The temperature and salinity data were obtained using Conductivity-Temperature-Depth (CTD) from sea surface down to 523 m water depth. The measurement was done along the transect line that consists of 60 sampling stations involved with furthest distance offshore at ~471 km. Vertical profiles of temperature, salinity and temperature-salinity (T-S) diagrams of each station were plotted and analyzed based on location and water depth. Offshore sampling stations at water depth greater than 50 m are known as deep waters while near shore sampling station at water depth less than 50m is known as shallow waters. The constructed vertical profiles showed that as water depth increases, salinity increases whereas temperature decreases. Comparison of minimum and maximum temperature range of shallow and deep waters is 15°C and 1°C respectively. However, there is only 0.71°C difference of salinity between minimum salinity of shallow waters and deep waters. The seawater variable of Sarawak waters are impacted by the distance from mainland and its geographical location as well as the rivers influx into the SCS. Constant climate change due to seasonal monsoon and high rainfall as it is located in the tropical region contribute to the spatial temperature and salinity in this area. High rivers runoff into the SCS can reduce the salinity of the water at coastal area. Salinity increases as sampling location further offshore. High rainfall may decreases water temperature and salinity at water surface

    Contribution of aerosol species to the 2019 smoke episodes over the east coast of peninsular Malaysia.

    Get PDF
    Large-scale biomass burning (BB) emits large amounts of aerosols that lead to transboundary smoke events and adversely impacts human health, whilst causing societal and environmental issues. High ambient PM2.5 concentration in the year 2019 based on New Malaysia Ambient Air Quality Standard (NMAAQS) was identified as high pollution episodes, HP1 and HP2 on the east coast Peninsular Malaysia (ECPM). Meanwhile, the low PM2.5 concentration episodes are known as LP1 and LP2. The transboundary smoke events in Indochina and Indonesia are linked to HP1 (March–April) and HP2(August–September), respectively from backward trajectory and MERRA-2 model re-analyses weather data. The correlation analysis showed a significantly strong positive correlation (r) of black carbon (HP1: 0.91; HP2: 0.96), organic carbon (HP1: 0.90; HP2: 0.94), and sulphate (HP1: 0.80; HP2: 0.61) with the aerosol optical depth (AOD) levels during high pollution episodes. The synoptic weather condition and inter-monsoon in HP1 and southwest monsoon in HP2 introduce strong wind speed and favourable wind pattern that can initiate the long-range transport of high AOD and PM2.5 to the ECPM region. In conclusion, this study demystified the sources of BB emissions, the transport route of transboundary smoke events, their influence factors during different high pollution periods, and the links between aerosol species from local and non-local emissions with AOD levels and PM2.5 concentrations along the ECPM, which altogether provide crucial information on climate variability signal and can help in developing a corresponding strategy for high pollution episodes

    Seasonal and long term variations of surface ozone concentrations in Malaysian Borneo

    Get PDF
    Malaysian Borneo has a lower population density and is an area known for its lush rainforests. However, changes in pollutant profiles are expected due to increasing urbanisation and commercial-industrial activities. This study aims to determine the variation of surface {O3} concentration recorded at seven selected stations in Malaysian Borneo. Hourly surface {O3} data covering the period 2002 to 2013, obtained from the Malaysian Department of Environment (DOE), were analysed using statistical methods. The results show that the concentrations of {O3} recorded in Malaysian Borneo during the study period were below the maximum Malaysian Air Quality Standard of 100 ppbv. The hourly average and maximum {O3} concentrations of 31 and 92 ppbv reported at Bintulu (S3) respectively were the highest among the {O3} concentrations recorded at the sampling stations. Further investigation on {O3} precursors show that sampling sites located near to local petrochemical industrial activities, such as Bintulu (S3) and Miri (S4), have higher NO2/NO ratios (between 3.21 and 5.67) compared to other stations. The normalised {O3} values recorded at all stations were higher during the weekend compared to weekdays (unlike its precursors) which suggests the influence of {O3} titration by {NO} during weekdays. The results also show that there are distinct seasonal variations in {O3} across Borneo. High surface {O3} concentrations were usually observed between August and September at all stations with the exception of station {S7} on the east coast. Majority of the stations (except {S1} and S6) have recorded increasing averaged maximum concentrations of surface {O3} over the analysed years. Increasing trends of {NO2} and decreasing trends of {NO} influence the yearly averaged maximum of {O3} especially at S3. This study also shows that variations of meteorological factors such as wind speed and direction, humidity and temperature influence the concentration of surface O3

    Characterisation of particle mass and number concentration on the east coast of the Malaysian Peninsula during the northeast monsoon

    Get PDF
    Particle mass concentrations (PM10, PM2.5 and PM1) and particle number concentration ((PNC); 0.27 μm ≤ Dp ≤ 34.00 μm) were measured in the tropical coastal environment of Bachok, Kelantan on the Malaysian Peninsula bordering the southern edge of the South China Sea. Statistical methods were applied on a three-month hourly data set (9th January to 24th March 2014) to study the influence of north-easterly winds on the patterns of particle mass and PNC size distributions. The 24-h concentrations of particle mass obtained in this study were below the standard values detailed by the Recommended Malaysian Air Quality Guideline (RMAQG), United States Environmental Protection Agency (US EPA) and European Union (EU) except for PM2.5, which recorded a 24-h average of 30 ± 18 μg m-3 and exceeded the World Health Organisation (WHO) threshold value (25 μg m-3). Principal component analysis (PCA) revealed that PNC with smaller diameter sizes (0.27-4.50 μm) showed a stronger influence, accounting for 57.6% of the variability in PNC data set. Concentrations of both particle mass and PNC increased steadily in the morning with a distinct peak observed at around 8.00 h, related to a combination of dispersion of accumulated particles overnight and local traffic. In addition to local anthropogenic, agricultural burning and forest fire activities, long-range transport also affects the study area. Hotspot and backward wind trajectory observations illustrated that the biomass burning episode (around February-March) significantly influenced PNC. Meteorological parameters influenced smaller size particles (i.e. PM1 and Dp (0.27-0.43 μm)) the most

    Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia

    Get PDF
    Over the last decades, the development of the Klang Valley (Malaysia), as an urban commercial and industrial area, has elevated the risk of atmospheric pollutions. There are several significant sources of air pollutants which vary depending on the background of the location they originate from. The aim of this study is to determine the trend and status of air quality and their correlation with the meteorological factors at different air quality monitoring stations in the Klang Valley. The data of five major air pollutants (PM10, CO, SO2, O3, NO2) were recorded at the Alam Sekitar Sdn Bhd (ASMA) monitoring stations in the Klang Valley, namely Petaling Jaya (S1), Shah Alam (S2) and Gombak (S3). The data from these three stations were compared with the data recorded at Jerantut, Pahang (B), a background station established by the Malaysian Department of Environment. Results show that the concentrations of CO, NO2 and SO2 are higher at Petaling Jaya (S1) which is due to influence of heavy traffic. The concentrations of PM10 and O3, however, are predominantly related to regional tropical factors, such as the influence of biomass burning and of ultra violet radiation from sunlight. They can, though, also be influenced by local sources. There are relatively stronger inter-pollutant correlations at the stations of Gombak and Shah Alam, and the results also suggest that heavy traffic flow induces high concentrations of PM10, CO, NO2 and SO2 at the three sampling stations. Additionally, meteorological factors, particularly the ambient temperature and wind speed, may influence the concentration of PM10 in the atmosphere

    Future changes in annual precipitation extremes over Southeast Asia under global warming of 2°C

    Get PDF
    THIS ARTICLE PROVIDES detailed information on projected changes in annual precipitation extremes over Southeast Asia under global warming of 2°C based on the multi-model simulations of the Southeast Asia Regional Climate Downscaling/Coordinated Regional Climate Downscaling Experiment Southeast Asia (SEACLID/CORDEX-SEA). Four indices of extreme precipitation are considered: annual total precipitation (PRCPTOT), consecutive dry days (CDD), frequency of rainfall exceeding 50 mm/day (R50mm), and intensity of extreme precipitation (RX1day). The ensemble mean of 10 simulations showed reasonable performance in simulating observed characteristics of extreme precipitation during the historical period of 1986–2005. The year 2041 was taken as the year when global mean temperature reaches 2°C above pre-industrial levels under unmitigated climate change scenario based on Karmalkar and Bradley (2017). Results indicate that the most prominent changes during the period of 2031–2051 were largely significant. Robust increases in CDD imply impending drier conditions over Indonesia, while increases in RX1day suggest more intense rainfall events over most of Indochina under 2°C global warming scenario. Furthermore, northern Myanmar is projected to experience increases in CDD, R50mm and RX1day, suggesting that the area may face more serious repercussions than other areas in Southeast Asia

    Projected changes of future climate extremes in Malaysia

    Get PDF
    Mitigating and adapting to the impacts of climate change at regional level require downscaled projection of future climate states. This paper examined the possible changes of future climate extremes over Malaysia based on the IPCC SRES A1B emission scenario. The projected changes at 17 stations were produced by bias correcting the UKMO PRECIS downscaling simulation output. The simulation expected higher probability of rainfall extreme occurrences over the west coast of Peninsular Malaysia during the autumn transitional monsoon period. In addition, possible early monsoon rainfall was projected for certain stations located over East Malaysia. The simulation also projected larger increase of warm temperature extremes but smaller decrease of cold extremes, suggesting asymmetric expansion of the temperature distribution. The impact of the elevated green house gases (GHG) is higher in the night time temperature extremes as compared to the day time temperature extremes. The larger increment of warm night frequencies as compared to the warm day suggests smaller diurnal temperature ranges under the influence of higher greenhouse gases. Stations located in East Malaysia were projected to experience the largest increase of warm night occurrence

    Current circulation pattern in waters around Pulau Tinggi, Johor

    Get PDF
    The current circulation pattern in waters around Pulau Tinggi, Johor was deduced based on the results of the Acoustic Doppler Current Profiler (ADCP) measurements during a period of 16 – 19 August 2004. It appears that the currents, regardless of tidal cycle, were predominantly southerly or southeasterly with average speeds of between 30 – 50 cm s-1. There appears to be current speed horizontal gradient toward the island as the current became weaker as it gets closer to the island. In the upper 10-15 m the currents were slowed by the prevailing winds which were predominantly southeasterly during the period. In the lower layer, about 10 m from seabed, the current speed reduced drastically due to bottom friction. The circulation pattern proves to be a typical pattern of a flow around an island where an evident of an eddy was captured in the observation data in a station located south of the island. Estimated shallow water Reynolds number indicates that the flow may produce a pair vortex of opposite direction and a central return flow at the southern end of the island
    • …
    corecore