85 research outputs found

    Taking a walk: the female tourist experience

    Get PDF
    This feminist, qualitative study explores the experiences of female tourists who like to walk during their holiday. The findings highlight that women’s full access to the benefits of walking whilst on holiday are constrained by their feelings of vulnerability and their perceptions of possible risk if walking alone, particularly at night and in isolated spaces. In order to cope with perceived risk, participants employed a number of safeguarding and self-surveillance strategies. This study therefore supports other research on female tourists that highlight the differences among male and female tourist experiences, and that point to the measures women take to keep themselves safe

    Chemical Fabrication Used to Produce Thin-Film Materials for High Power-to- Weight-Ratio Space Photovoltaic Arrays

    Get PDF
    The key to achieving high specific power (watts per kilogram) space solar arrays is the development of a high-efficiency, thin-film solar cell that can be fabricated directly on a flexible, lightweight, space-qualified durable substrate such as Kapton (DuPont) or other polyimide or suitable polymer film. Cell efficiencies approaching 20 percent at AM0 (air mass zero) are required. Current thin-film cell fabrication approaches are limited by either (1) the ultimate efficiency that can be achieved with the device material and structure or (2) the requirement for high-temperature deposition processes that are incompatible with all presently known flexible polyimide or other polymer substrate materials. Cell fabrication processes must be developed that will produce high-efficiency cells at temperatures below 400 degrees Celsius, and preferably below 300 degress Celsius to minimize the problems associated with the difference between the coefficients of thermal expansion of the substrate and thin-film solar cell and/or the decomposition of the substrate

    Mitral Cells of the Olfactory Bulb Perform Metabolic Sensing and Are Disrupted by Obesity at the Level of the Kv1.3 Ion Channel

    Get PDF
    Sixty-five percent of Americans are over-weight. While the neuroendocrine controls of energy homeostasis are well known, how sensory systems respond to and are impacted by obesity is scantily understood. The main accepted function of the olfactory system is to provide an internal depiction of our external chemical environment, starting from the detection of chemosensory cues. We hypothesized that the system additionally functions to encode internal chemistry via the detection of chemicals that are important indicators of metabolic state. We here uncovered that the olfactory bulb (OB) subserves as an internal sensor of metabolism via insulin-induced modulation of the potassium channel Kv1.3. Using an adult slice preparation of the olfactory bulb, we found that evoked neural activity in Kv1.3-expressing mitral cells is enhanced following acute insulin application. Insulin mediated changes in mitral cell excitability are predominantly due to the modulation of Kv1.3 channels as evidenced by the lack of effect in slices from Kv1.3-null mice. Moreover, a selective Kv1.3 peptide blocker (ShK186) inhibits more than 80% of the outward current in parallel voltage-clamp studies, whereby insulin significantly decreases the peak current magnitude without altering the kinetics of inactivation or deactivation. Mice that were chronically administered insulin using intranasal delivery approaches exhibited either an elevation in basal firing frequency or fired a single cluster of action potentials. Following chronic administration of the hormone, mitral cells were inhibited by application of acute insulin rather than excited. Mice made obese through a diet of ∼32% fat exhibited prominent changes in mitral cell action potential shape and clustering behavior, whereby the subsequent response to acute insulin stimulation was either attenuated or completely absent. Our results implicate an inappropriate neural function of olfactory sensors following exposure to chronic levels of the hormone insulin (diabetes) or increased body weight (obesity)

    Elemental and configural olfactory coding by antennal lobe neurons of the honeybee (Apis mellifera)

    Get PDF
    When smelling an odorant mixture, olfactory systems can be analytical (i.e. extract information about the mixture elements) or synthetic (i.e. creating a configural percept of the mixture). Here, we studied elemental and configural mixture coding in olfactory neurons of the honeybee antennal lobe, local neurons in particular. We conducted intracellular recordings and stimulated with monomolecular odorants and their coherent or incoherent binary mixtures to reproduce a temporally dynamic environment. We found that about half of the neurons responded as ‘elemental neurons’, i.e. responses evoked by mixtures reflected the underlying feature information from one of the components. The other half responded as ‘configural neurons’, i.e. responses to mixtures were clearly different from responses to their single components. Elemental neurons divided in late responders (above 60 ms) and early responder neurons (below 60 ms), whereas responses of configural coding neurons concentrated in-between these divisions. Latencies of neurons with configural responses express a tendency to be faster for coherent stimuli which implies employment in different processing circuits

    Oxidative protein labeling in mass-spectrometry-based proteomics

    Get PDF
    Oxidation of proteins and peptides is a common phenomenon, and can be employed as a labeling technique for mass-spectrometry-based proteomics. Nonspecific oxidative labeling methods can modify almost any amino acid residue in a protein or only surface-exposed regions. Specific agents may label reactive functional groups in amino acids, primarily cysteine, methionine, tyrosine, and tryptophan. Nonspecific radical intermediates (reactive oxygen, nitrogen, or halogen species) can be produced by chemical, photochemical, electrochemical, or enzymatic methods. More targeted oxidation can be achieved by chemical reagents but also by direct electrochemical oxidation, which opens the way to instrumental labeling methods. Oxidative labeling of amino acids in the context of liquid chromatography(LC)–mass spectrometry (MS) based proteomics allows for differential LC separation, improved MS ionization, and label-specific fragmentation and detection. Oxidation of proteins can create new reactive groups which are useful for secondary, more conventional derivatization reactions with, e.g., fluorescent labels. This review summarizes reactions of oxidizing agents with peptides and proteins, the corresponding methodologies and instrumentation, and the major, innovative applications of oxidative protein labeling described in selected literature from the last decade

    ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration

    Get PDF
    corecore