76 research outputs found

    Ground deformation monitoring of the eruption offshore Mayotte

    Get PDF
    In May 2018, the Mayotte island, located in the Indian Ocean, was affected by an unprecedented seismic crisis, followed by anomalous on-land surface displacements in July 2018. Cumulatively from July 1, 2018 to December 31, 2021, the horizontal displacements were approximately 21 to 25 cm eastward, and subsidence was approximately 10 to 19 cm. The study of data recorded by the on-land GNSS network, and their modeling coupled with data from ocean bottom pressure gauges, allowed us to propose a magmatic origin of the seismic crisis with the deflation of a deep source east of Mayotte, that was confirmed in May 2019 by the discovery of a submarine eruption, 50 km offshore of Mayotte ([Feuillet et al., 2021]). Despite a non-optimal network geometry and receivers located far from the source, the GNSS data allowed following the deep dynamics of magma transfer, via the volume flow monitoring, throughout the eruption

    Shear-wave velocity structure beneath the Dinarides from the inversion of Rayleigh-wave dispersion

    Get PDF
    Highlights • Rayleigh-wave phase velocity in the wider Dinarides region using the two-station method. • Uppermost mantle shear-wave velocity model of the Dinarides-Adriatic Sea region. • Velocity model reveals a robust high-velocity anomaly present under the whole Dinarides. • High-velocity anomaly reaches depth of 160 km in the northern Dinarides to more than 200 km under southern Dinarides. • New structural model incorporating delamination as one of the processes controlling the continental collision in the Dinarides. The interaction between the Adriatic microplate (Adria) and Eurasia is the main driving factor in the central Mediterranean tectonics. Their interplay has shaped the geodynamics of the whole region and formed several mountain belts including Alps, Dinarides and Apennines. Among these, Dinarides are the least investigated and little is known about the underlying geodynamic processes. There are numerous open questions about the current state of interaction between Adria and Eurasia under the Dinaric domain. One of the most interesting is the nature of lithospheric underthrusting of Adriatic plate, e.g. length of the slab or varying slab disposition along the orogen. Previous investigations have found a low-velocity zone in the uppermost mantle under the northern-central Dinarides which was interpreted as a slab gap. Conversely, several newer studies have indicated the presence of the continuous slab under the Dinarides with no trace of the low velocity zone. Thus, to investigate the Dinaric mantle structure further, we use regional-to-teleseismic surface-wave records from 98 seismic stations in the wider Dinarides region to create a 3D shear-wave velocity model. More precisely, a two-station method is used to extract Rayleigh-wave phase velocity while tomography and 1D inversion of the phase velocity are employed to map the depth dependent shear-wave velocity. Resulting velocity model reveals a robust high-velocity anomaly present under the whole Dinarides, reaching the depths of 160 km in the north to more than 200 km under southern Dinarides. These results do not agree with most of the previous investigations and show continuous underthrusting of the Adriatic lithosphere under Europe along the whole Dinaric region. The geometry of the down-going slab varies from the deeper slab in the north and south to the shallower underthrusting in the center. On-top of both north and south slabs there is a low-velocity wedge indicating lithospheric delamination which could explain the 200 km deep high-velocity body existing under the southern Dinarides

    Crustal Thinning From Orogen to Back-Arc Basin: The Structure of the Pannonian Basin Region Revealed by P-to-S Converted Seismic Waves

    Get PDF
    We present the results of P-to-S receiver function analysis to improve the 3D image of the sedimentary layer, the upper crust, and lower crust in the Pannonian Basin area. The Pannonian Basin hosts deep sedimentary depocentres superimposed on a complex basement structure and it is surrounded by mountain belts. We processed waveforms from 221 three-component broadband seismological stations. As a result of the dense station coverage, we were able to achieve so far unprecedented spatial resolution in determining the velocity structure of the crust. We applied a three-fold quality control process; the first two being applied to the observed waveforms and the third to the calculated radial receiver functions. This work is the first comprehensive receiver function study of the entire region. To prepare the inversions, we performed station-wise H-Vp/Vs grid search, as well as Common Conversion Point migration. Our main focus was then the S-wave velocity structure of the area, which we determined by the Neighborhood Algorithm inversion method at each station, where data were sub-divided into back-azimuthal bundles based on similar Ps delay times. The 1D, nonlinear inversions provided the depth of the discontinuities, shear-wave velocities and Vp/Vs ratios of each layer per bundle, and we calculated uncertainty values for each of these parameters. We then developed a 3D interpolation method based on natural neighbor interpolation to obtain the 3D crustal structure from the local inversion results. We present the sedimentary thickness map, the first Conrad depth map and an improved, detailed Moho map, as well as the first upper and lower crustal thickness maps obtained from receiver function analysis. The velocity jump across the Conrad discontinuity is estimated at less than 0.2 km/s over most of the investigated area. We also compare the new Moho map from our approach to simple grid search results and prior knowledge from other techniques. Our Moho depth map presents local variations in the investigated area: the crust-mantle boundary is at 20–26 km beneath the sedimentary basins, while it is situated deeper below the Apuseni Mountains, Transdanubian and North Hungarian Ranges (28–33 km), and it is the deepest beneath the Eastern Alps and the Southern Carpathians (40–45 km). These values reflect well the Neogene evolution of the region, such as crustal thinning of the Pannonian Basin and orogenic thickening in the neighboring mountain belts

    Station sismologique CHMF de Charmoille (Doubs)

    No full text
    The seismological station CHMF of Charmoille (Doubs) is installed in a gallery that housed a water pipe supplying a village below. As in abandoned mines, this type of location is ideal because the sensor is placed on a flat concrete surface cast on the rock and temperature and pressure variations are low. Here, to ensure perfect insulation, the gallery was closed with a double-glazed window surrounded by concrete. In the foreground on the left is the electrical cabinet housing the rest of the station's instruments. This photo was taken during a monitoring visit to the station by the team from the Seismological Observatory of North-East France (Eost-Obsnef). The station is integrated into the national Résif research infrastructure, dedicated to the observation and understanding of the structure and dynamics of the Inner Earth. Résif is based on high-tech observation networks, composed of seismological, geodetic and gravimetric instruments deployed in a dense manner throughout France. These data make it possible to study with high spatial and temporal resolution the deformation of the ground, surface and deep structures, seismicity on a local and global scale and natural hazards, and more particularly seismic hazards, on French territory. Résif is integrated into European (EPOS - European Plate Observing System) and global systems of instruments for imaging the Earth's interior as a whole and studying many natural phenomena.La station sismologique CHMF de Charmoille (Doubs) est installée dans une galerie qui abritait une conduite d'eau alimentant un village en contrebas. Comme dans les mines désaffectées, ce type d'emplacement est idéal car le capteur y est posé sur une surface plane en béton coulée à même le rocher et les variations de température et de pression y sont faibles. Ici, pour assurer une isolation parfaite, la galerie a été fermée par une fenêtre à double vitrage entourée de béton. On voit, au premier plan à gauche, l'armoire électrique abritant le reste des instruments de la station. Cette photo a été prise lors d'une visite de contrôle de la station par l'équipe de l'Observatoire sismologique du Nord-Est de la France (Eost-Obsnef). La station est intégrée à l'infrastructure nationale de recherche Résif, dédiée à l’observation et la compréhension de la structure et de la dynamique Terre interne. Résif se base sur des réseaux d’observation de haut niveau technologique, composés d’instruments sismologiques, géodésiques et gravimétriques déployés de manière dense sur tout le territoire français. Ces données permettent d’étudier avec une haute résolution spatio-temporelle la déformation du sol, les structures superficielles et profondes, la sismicité à l’échelle locale et globale et les aléas naturels, et plus particulièrement sismiques, sur le territoire français. Résif s’intègre aux dispositifs européens (EPOS - European Plate Observing System) et mondiaux d’instruments permettant d’imager l’intérieur de la Terre dans sa globalité et d’étudier de nombreux phénomènes naturels

    La station sismologique MANO de Manonville (Meurthe-et-Moselle), installée en forage

    No full text
    Seismological stations may have to be buried to areas where conditions are stable so that the recorded data are not affected by external disturbances. This is why the drilling technique is used. In this photo, we see the seismological station MANO of Manonville (Meurthe-et-Moselle). It was drilled in a former abandoned quarry. In the foreground is the cabinet housing the scientific equipment, except for the sensor which is at the bottom of the 6-metre deep shaft (in the background). The solar panels are used to supply power to the assembly while waiting for an electrical connection. We also distinguish (yellow box) the temporary station installed beforehand for the test and which is dismantled during the final installation. This station, installed by the team of the Seismological Observatory of North-East France (Eost-Obsnef), is part of the national Résif research infrastructure, dedicated to the observation and understanding of the structure and dynamics of the Inner Earth. Résif is based on high-tech observation networks, composed of seismological, geodetic and gravimetric instruments deployed in a dense manner throughout France. These data make it possible to study with high spatial and temporal resolution the deformation of the ground, surface and deep structures, seismicity on a local and global scale and natural hazards, and more particularly seismic hazards, on French territory. Résif is integrated into European (EPOS - European Plate Observing System) and global systems of instruments for imaging the Earth's interior as a whole and studying many natural phenomena.Les stations sismologiques doivent parfois être enterrées jusqu'à des zones où les conditions sont stables afin que les données enregistrées ne soient pas affectées par des perturbations extérieures. C'est pourquoi on a recours à la technique du forage. Sur cette photo, on voit la station sismologique MANO de Manonville (Meurthe-et-Moselle). Elle a été installée en forage dans une ancienne carrière désaffectée. On voit au premier plan l'armoire abritant les équipements scientifiques, à l'exception du capteur qui est au fond du puits de 6 mètres de profondeur (au second plan). Les panneaux solaires servent à l'alimentation électrique de l'ensemble dans l'attente d'un raccordement électrique. On distingue également (boitier jaune) la station temporaire installée préalablement pour le test et qui est démontée lors de l'installation définitive. Cette station, installée par l'équipe de l'Observatoire sismologique du Nord-Est de la France (Eost-Obsnef), est intégrée à l'infrastructure nationale de recherche Résif, dédiée à l’observation et la compréhension de la structure et de la dynamique Terre interne. Résif se base sur des réseaux d’observation de haut niveau technologique, composés d’instruments sismologiques, géodésiques et gravimétriques déployés de manière dense sur tout le territoire français. Ces données permettent d’étudier avec une haute résolution spatio-temporelle la déformation du sol, les structures superficielles et profondes, la sismicité à l’échelle locale et globale et les aléas naturels, et plus particulièrement sismiques, sur le territoire français. Résif s’intègre aux dispositifs européens (EPOS - European Plate Observing System) et mondiaux d’instruments permettant d’imager l’intérieur de la Terre dans sa globalité et d’étudier de nombreux phénomènes naturels

    Installation d'un capteur sismologique

    No full text
    Installation d'un capteur sismologiqu

    Station sismologique ECH du Rap dans la mine Saint Guillaume (Haut-Rhin).

    No full text
    This image shows the Saint Guillaume mine in which several sensors are installed: a short period velocimeter (L4C-3D), an accelerometer (Episensor ES-T) and long period velocimeters (STS-1). These instruments belong to the ECH station installed in the commune of Sainte-Marie-aux-Mines and operated by the team of the North-East France Seismological Observatory (Obsnef) and Geoscope for long period measurements. The station is integrated into the national research infrastructure Résif for accelerometric measurements, which is dedicated to the observation and understanding of the internal Earth structure and dynamics. Résif is based on high technology observation networks, composed of seismological, geodetic and gravimetric instruments deployed densely throughout France. The data collected enable the study with high spatio-temporal resolution of ground deformation, surface and deep structures, local and global seismicity and natural hazards, particularly seismic, on French territory. Résif is integrated into the European (EPOS - European Plate Observing System) and worldwide systems of instruments used to image the Earth's interior as a whole and to study numerous natural phenomena.Cette image présente la mine Saint Guillaume dans laquelle sont installés plusieurs capteurs : un vélocimètre courte période (L4C-3D), un accéléromètre (Episensor ES-T) et des vélocimètres longue période (STS-1). Ces instruments appartiennent à la station ECH installée sur la commune de Sainte-Marie-aux-Mines et opérée par l’équipe de l’Observatoire sismologique du Nord-Est de la France (Obsnef) et de Géoscope pour les mesures longues périodes. La station est intégrée à l’infrastructure de recherche nationale Résif en ce qui concerne la mesure accélérométrique, qui est dédiée à l’observation et la compréhension de la structure et de la dynamique Terre interne. Résif se base sur des réseaux d’observation de haut niveau technologique, composés d’instruments sismologiques, géodésiques et gravimétriques déployés de manière dense sur tout le territoire français. Les données recueillies permettent d’étudier avec une haute résolution spatio-temporelle la déformation du sol, les structures superficielles et profondes, la sismicité à l’échelle locale et globale et les aléas naturels, et plus particulièrement sismiques, sur le territoire français. Résif s’intègre aux dispositifs européens (EPOS - European Plate Observing System) et mondiaux d’instruments permettant d’imager l’intérieur de la Terre dans sa globalité et d’étudier de nombreux phénomènes naturels
    • …
    corecore