61 research outputs found

    PA-iMFL: Communication-Efficient Privacy Amplification Method against Data Reconstruction Attack in Improved Multi-Layer Federated Learning

    Full text link
    Recently, big data has seen explosive growth in the Internet of Things (IoT). Multi-layer FL (MFL) based on cloud-edge-end architecture can promote model training efficiency and model accuracy while preserving IoT data privacy. This paper considers an improved MFL, where edge layer devices own private data and can join the training process. iMFL can improve edge resource utilization and also alleviate the strict requirement of end devices, but suffers from the issues of Data Reconstruction Attack (DRA) and unacceptable communication overhead. This paper aims to address these issues with iMFL. We propose a Privacy Amplification scheme on iMFL (PA-iMFL). Differing from standard MFL, we design privacy operations in end and edge devices after local training, including three sequential components, local differential privacy with Laplace mechanism, privacy amplification subsample, and gradient sign reset. Benefitting from privacy operations, PA-iMFL reduces communication overhead and achieves privacy-preserving. Extensive results demonstrate that against State-Of-The-Art (SOTA) DRAs, PA-iMFL can effectively mitigate private data leakage and reach the same level of protection capability as the SOTA defense model. Moreover, due to adopting privacy operations in edge devices, PA-iMFL promotes up to 2.8 times communication efficiency than the SOTA compression method without compromising model accuracy.Comment: 12 pages, 11 figure

    Review on the influence of process parameters in incremental sheet forming

    Get PDF
    Incremental sheet forming (ISF) is a relatively new flexible forming process. ISF has excellent adaptability to conventional milling machines and requires minimum use of complex tooling, dies and forming press, which makes the process cost-effective and easy to automate for various applications. In the past two decades, extensive research on ISF has resulted in significant advances being made in fundamental understanding and development of new processing and tooling solutions. However, ISF has yet to be fully implemented to mainstream high-value manufacturing industries due to a number of technical challenges, all of which are directly related to ISF process parameters. This paper aims to provide a detailed review of the current state-of-the-art of ISF processes in terms of its technological capabilities and specific limitations with discussions on the ISF process parameters and their effects on ISF processes. Particular attention is given to the ISF process parameters on the formability, deformation and failure mechanics, springback and accuracy and surface roughness. This leads to a number of recommendations that are considered essential for future research effort

    Fabrication of Tough Hydrogel Composites from Photoresponsive Polymers to Show Double-Network Effect

    Get PDF
    Inspired by the toughening mechanism of double-network (DN) gels, tough hydrogel composites with a sandwich structure were fabricated from photoresponsive polymers. By copolymerization of hydrophilic monomers, 2-ureidoethyl methacrylate (UM), and photoresponsive hydrophobic monomers, (2-nitrobenzyloxycarbonylaminoethyl methacrylate (NBOC)) at high concentrations, physical hydrogels that are soft and highly stretchable are formed due to the hydrophobic associations of NBOC, serving as dynamic crosslinkers. By UV irradiation, the physical crosslinking switches into chemical crosslinking, and the soft physical hydrogels transform into rigid and less stretchable chemical hydrogels. By UV curing the surface layers of the physical hydrogels, we prepared hydrogel composites having a sandwiched structure with two rigid outer layers and a soft inner layer. The molecular-level continuous interfaces and matched swelling ratios between the layers ensure the macroscale hydrogel compositesā€™ high strength and toughness with a DN gel effect. The outer layers fracture preferentially at deformation, playing a role like the first network of a DN gel, while the inner layer maintains the integrity, playing a role resembling the second network. The evolution of the fracture morphology of the rigid layers gives useful insight into the internal fracture process of DN gels

    Experimental Study on Enhancing the Mechanical Properties of Sandy Soil by Combining Microbial Mineralization Technology with Silty Soil

    No full text
    Currently, coastal sandy soils face issues such as insufficient foundation strength, which has become one of the crucial factors constraining urban development. Geotechnical engineering, as a traditional discipline, breaks down disciplinary barriers, promotes interdisciplinary integration, and realizes the green ecological and low-carbon development of geotechnical engineering, which is highly important. Based on the ā€œdual carbonā€ concept advocating a green and environmentally friendly lifestyle, Bacillus spores were utilized to induce calcium carbonate precipitation technology (MICP) to solidify coastal sandy soils, leveraging the rough-surface and low-permeability characteristics of silty soil. The mechanical-strength variations in the samples were explored through experiments, such as calcium carbonate generation rate tests, non-consolidated undrained triaxial shear tests, and scanning electron microscopy (SEM) experiments, to investigate the MICP solidification mechanism. The results indicate that by incorporating silty soil into sandy soil for MICP solidification, the calcium carbonate generation rates of the samples were significantly increased. With the increase in the silty-soil content, the enhancement range was 0.58ā€“3.62%, with the maximum calcium carbonate generation rate occurring at a 5% content level. As the silty-soil content gradually increased from 1% to 5%, the peak deviator stress increased by 4.2ā€“43.2%, enhancing the sample shear strength. Furthermore, the relationship between the internal-friction angle, cohesion, and shear strength further validates the enhancement of the shear strength. Silty soil plays roles in adsorption and physical filling during the MICP solidification process, reducing the inter-particle pores in sandy soil, increasing the compactness, providing adsorption sites, and enhancing the calcium carbonate generation rate, thereby improving the shear strength. The research findings can provide guidance for reinforcing poor coastal sandy-soil foundations in various regions

    sCMOS Noise-Corrected Superresolution Reconstruction Algorithm for Structured Illumination Microscopy

    No full text
    Structured illumination microscopy (SIM) is widely applied due to its high temporal and spatial resolution imaging ability. sCMOS cameras are often used in SIM due to their superior sensitivity, resolution, field of view, and frame rates. However, the unique single-pixel-dependent readout noise of sCMOS cameras may lead to SIM reconstruction artefacts and affect the accuracy of subsequent statistical analysis. We first established a nonuniform sCMOS noise model to address this issue, which incorporates the single-pixel-dependent offset, gain, and variance based on the SIM imaging process. The simulation indicates that the sCMOS pixel-dependent readout noise causes artefacts in the reconstructed SIM superresolution (SR) image. Thus, we propose a novel sCMOS noise-corrected SIM reconstruction algorithm derived from the imaging model, which can effectively suppress the sCMOS noise-related reconstruction artefacts and improve the signal-to-noise ratio (SNR)

    The Effect of Arch Height and Material Hardness of Personalized Insole on Correction and Tissues of Flatfoot

    No full text
    Flat foot is one of the common deformities in the youth population, seriously affecting the weight supporting and daily exercising. However, there is lacking of quantitative data relative to material selection and shape design of the personalized orthopedic insole. This study was to evaluate the biomechanical effects of material hardness and support height of personalized orthopedic insole on foot tissues, by in vivo experiment and finite element modeling. The correction of arch height increased with material hardness and support height. The peak plantar pressure increased with the material hardness, and these values by wearing insoles of 40Ā° were apparently higher than the bare feet condition. Harder insole material results in higher stress in the joint and ligament stress than softer material. In the calcaneocuboid joint, the stress increased with the arch height of insoles. The material hardness did not apparently affect the stress in the ankle joints, but the support heights of insole did. In general, insole material and support design are positively affecting the correction of orthopedic insole, but negatively resulting in unreasonable stress on the stress in the joint and ligaments. There should be an integration of improving correction and reducing stress in foot tissues

    Unmanned Aerial Vehicle Meets Vehicle-to-Everything in Secure Communications

    No full text
    • ā€¦
    corecore