15,416 research outputs found

    Data Acquisition and digital Instrumentation Engineering Modelling for Intelligent Learning and Recognition

    Get PDF
    In data acquisition and digital instrumentation fields, it is essential to understand the learning and recognition to acquire data and information of objects to be studied. In recent years, engineering modelling and simulation contribute greatly to the understanding of intelligent learning and recognition problems. The ability to learn is one of the central features of intelligence, which makes it an important concern for both cognitive psychology and artificial intelligence. In this paper, definitions and modelling aspects of learning are discussed. Fundamentals of learning and recognition and their applications are investigated and described. Illustrations are given to demonstrate the increasing applications of learning and recognition with engineering modelling in data acquisition and digital instrumentation fields

    H2B: Heartbeat-based Secret Key Generation Using Piezo Vibration Sensors

    Full text link
    We present Heartbeats-2-Bits (H2B), which is a system for securely pairing wearable devices by generating a shared secret key from the skin vibrations caused by heartbeat. This work is motivated by potential power saving opportunity arising from the fact that heartbeat intervals can be detected energy-efficiently using inexpensive and power-efficient piezo sensors, which obviates the need to employ complex heartbeat monitors such as Electrocardiogram or Photoplethysmogram. Indeed, our experiments show that piezo sensors can measure heartbeat intervals on many different body locations including chest, wrist, waist, neck and ankle. Unfortunately, we also discover that the heartbeat interval signal captured by piezo vibration sensors has low Signal-to-Noise Ratio (SNR) because they are not designed as precision heartbeat monitors, which becomes the key challenge for H2B. To overcome this problem, we first apply a quantile function-based quantization method to fully extract the useful entropy from the noisy piezo measurements. We then propose a novel Compressive Sensing-based reconciliation method to correct the high bit mismatch rates between the two independently generated keys caused by low SNR. We prototype H2B using off-the-shelf piezo sensors and evaluate its performance on a dataset collected from different body positions of 23 participants. Our results show that H2B has an overwhelming pairing success rate of 95.6%. We also analyze and demonstrate H2B's robustness against three types of attacks. Finally, our power measurements show that H2B is very power-efficient

    Effects of hadronic potentials on elliptic flows in relativistic heavy ion collisions

    Get PDF
    Within the framework of a multiphase transport (AMPT) model that includes both initial partonic and final hadronic interactions, we show that including mean-field potentials in the hadronic phase leads to a splitting of the elliptic flows of particles and their antiparticles, providing thus a plausible explanation of the different elliptic flows between pp and pˉ{\bar p}, K+K^+ and KK^-, and π+\pi^+ and π\pi^- observed in recent Beam Energy Scan (BES) program at the Relativistic Heavy-Ion Collider (RHIC).Comment: 5 pages, 7 figure

    Confirming the 115.5-day periodicity in the X-ray light curve of ULX NGC 5408 X-1

    Full text link
    The Swift/XRT light curve of the ultraluminous X-ray (ULX) source NGC 5408 X-1 was re-analyzed with two new numerical approaches, Weighted Wavelet ZZ-transform (WWZ) and CLEANest, that are different from previous studies. Both techniques detected a prominent periodicity with a time scale of 115.5±1.5115.5\pm1.5 days, in excellent agreement with the detection of the same periodicity first reported by Strohmayer (2009). Monte Carlo simulation was employed to test the statisiticak confidence of the 115.5-day periodicity, yielding a statistical significance of >99.98> 99.98% (or >3.8σ>3.8\sigma). The robust detection of the 115.5-day quasi-periodic oscillations (QPOs), if it is due to the orbital motion of the binary, would infer a mass of a few thousand MM_\odot for the central black hole, implying an intermediate-mass black hole in NGC 5408 X-1.Comment: 6 pages, 2 figures, submitted to Research in Astronomy and Astrophysics (RAA

    Ferroelectric Ferrimagnetic LiFe2_2F6_6: Charge Ordering Mediated Magnetoelectricity

    Full text link
    Trirutile-type LiFe2_2F6_6 is a charge-ordered material with Fe2+^{2+}/Fe3+^{3+} configuration. Here its physical properties, including magnetism, electronic structure, phase transition, and charge ordering, are studied theoretically. On one hand, the charge ordering leads to improper ferroelectricity with a large polarization. On the other hand, its magnetic ground state can be tuned from the antiferromagnetic to ferrimagnetic by moderate compressive strain. Thus, LiFe2_2F6_6 can be a rare multiferroic with both large magnetization and polarization. Most importantly, since the charge ordering is the common ingredient for both ferroelectricity and magnetization, the net magnetization may be fully switched by flipping the polarization, rendering intrinsically strong magnetoelectric effect and desirable function.Comment: 8 pages, 8 figure
    corecore