22 research outputs found

    Id2-, RORγt-, and LTβR-independent initiation of lymphoid organogenesis in ocular immunity

    Get PDF
    The eye is protected by the ocular immunosurveillance system. We show that tear duct–associated lymphoid tissue (TALT) is located in the mouse lacrimal sac and shares immunological characteristics with mucosa-associated lymphoid tissues (MALTs), including the presence of M cells and immunocompetent cells for antigen uptake and subsequent generation of mucosal immune responses against ocularly encountered antigens and bacteria such as Pseudomonas aeruginosa. Initiation of TALT genesis began postnatally; it occurred even in germ-free conditions and was independent of signaling through organogenesis regulators, including inhibitor of DNA binding/differentiation 2, retinoic acid–related orphan receptor γt, lymphotoxin (LT) α1β2–LTβR, and lymphoid chemokines (CCL19, CCL21, and CXCL13). Thus, TALT shares immunological features with MALT but has a distinct tissue genesis mechanism and plays a key role in ocular immunity

    Paracrine IL-33 Stimulation Enhances Lipopolysaccharide-Mediated Macrophage Activation

    Get PDF
    BACKGROUND: IL-33, a member of the IL-1 family of cytokines, provokes Th2-type inflammation accompanied by accumulation of eosinophils through IL-33R, which consists of ST2 and IL-1RAcP. We previously demonstrated that macrophages produce IL-33 in response to LPS. Some immune responses were shown to differ between ST2-deficient mice and soluble ST2-Fc fusion protein-treated mice. Even in anti-ST2 antibody (Ab)-treated mice, the phenotypes differed between distinct Ab clones, because the characterization of such Abs (i.e., depletion, agonistic or blocking Abs) was unclear in some cases. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the precise role of IL-33, we newly generated neutralizing monoclonal Abs for IL-33. Exogenous IL-33 potentiated LPS-mediated cytokine production by macrophages. That LPS-mediated cytokine production by macrophages was suppressed by inhibition of endogenous IL-33 by the anti-IL-33 neutralizing mAbs. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that LPS-mediated macrophage activation is accelerated by macrophage-derived paracrine IL-33 stimulation

    TRAF6 Establishes Innate Immune Responses by Activating NF-κB and IRF7 upon Sensing Cytosolic Viral RNA and DNA

    Get PDF
    BACKGROUND:In response to viral infection, the innate immune system recognizes viral nucleic acids and then induces production of proinflammatory cytokines and type I interferons (IFNs). Toll-like receptor 7 (TLR7) and TLR9 detect viral RNA and DNA, respectively, in endosomal compartments, leading to the activation of nuclear factor kappaB (NF-kappaB) and IFN regulatory factors (IRFs) in plasmacytoid dendritic cells. During such TLR signaling, TNF receptor-associated factor 6 (TRAF6) is essential for the activation of NF-kappaB and the production of type I IFN. In contrast, RIG-like helicases (RLHs), cytosolic RNA sensors, are indispensable for antiviral responses in conventional dendritic cells, macrophages, and fibroblasts. However, the contribution of TRAF6 to the detection of cytosolic viral nucleic acids has been controversial, and the involvement of TRAF6 in IRF activation has not been adequately addressed. PRINCIPAL FINDINGS:Here we first show that TRAF6 plays a critical role in RLH signaling. The absence of TRAF6 resulted in enhanced viral replication and a significant reduction in the production of IL-6 and type I IFNs after infection with RNA virus. Activation of NF-kappaB and IRF7, but not that of IRF3, was significantly impaired during RLH signaling in the absence of TRAF6. TGFbeta-activated kinase 1 (TAK1) and MEKK3, whose activation by TRAF6 during TLR signaling is involved in NF-kappaB activation, were not essential for RLH-mediated NF-kappaB activation. We also demonstrate that TRAF6-deficiency impaired cytosolic DNA-induced antiviral responses, and this impairment was due to defective activation of NF-kappaB and IRF7. CONCLUSIONS/SIGNIFICANCE:Thus, TRAF6 mediates antiviral responses triggered by cytosolic viral DNA and RNA in a way that differs from that associated with TLR signaling. Given its essential role in signaling by various receptors involved in the acquired immune system, TRAF6 represents a key molecule in innate and antigen-specific immune responses against viral infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis

    No full text
    Signals emanating from the receptor for interleukin-1 (IL-1), lipopolysaccharide (LPS) or osteoclast differentiation factor/receptor activator of NFκB ligand (ODF/RANKL) stimulate transcription factors AP-1 through mitogen-activated protein kinase (MAPK) activation and NFκB through IκB kinase (IKK) activation. These kinases are thought to be activated by tumor necrosis factor receptor-associated factor 6 (TRAF6). However, molecular mechanisms by which TRAF6 activates various downstream kinases remain to be elucidated. We identified functional domains of TRAF6 under physiological conditions established by appropriate expression of TRAF6 mutants in TRAF6-deficient cells. In IL-1 and LPS signaling pathways, the RING finger and first zinc finger domains are not required for NFκB activation but are required for full activation of MAPK. However, IL-1 and LPS signals utilize distinct regions within the zinc finger domains of TRAF6 to activate NFκB. Furthermore, the RING finger domain is not required for differentiation of splenocytes to multinuclear osteoclasts, but is essential for osteoclast maturation. Thus, TRAF6 plays essential roles in both the differentiation and maturation of osteoclasts by activating various kinases via its multiple domains
    corecore