65 research outputs found

    Pressurization facilitates adenovirus-mediated gene transfer into vein graft

    Get PDF
    AbstractWe investigated whether application of non-distending hydrostatic pressure facilitates gene transfer into vein grafts. An external jugular vein was placed in a chamber with 100 ÎŒl adenovirus solution at a titer of 1010 pfu/ml and was pressurized to up to 8 atm above ambient pressure for 10 min. Histochemical analysis demonstrated a positive transgene expression in all layers of the vessel wall. Gene transfer with 8 atm pressurization resulted in an approximately 50 times higher transgene expression than that without pressurization. Under 8 atm pressurization, the efficiency of gene transfer reached a plateau at 7.5 min. The application of hydrostatic pressure may improve the effectiveness of intraoperative genetic engineering of vein grafts

    Effects of canagliflozin in patients with type 2 diabetes and chronic heart failure : a randomized trial (CANDLE)

    Get PDF
    Aims Little is known about the impact of sodium glucose co‐transporter 2 (SGLT2) inhibitors on cardiac biomarkers, such as natriuretic peptides, in type 2 diabetes (T2D) patients with concomitant chronic heart failure (CHF). We compared the effect of canagliflozin with glimepiride, based on changes in N‐terminal pro‐brain natriuretic peptide (NT‐proBNP), in that patient population. Methods and results Patients with T2D and stable CHF, randomized to receive canagliflozin 100 mg or glimepiride (starting‐dose: 0.5 mg), were examined using the primary endpoint of non‐inferiority of canagliflozin vs. glimepiride, defined as a margin of 1.1 in the upper limit of the two‐sided 95% confidence interval (CI) for the group ratio of percentage change in NT‐proBNP at 24 weeks. Data analysis of 233 patients showed mean left ventricular ejection fraction (LVEF) at randomization was 57.6 ± 14.6%, with 71% of patients having a preserved LVEF (≄50%). Ratio of NT‐proBNP percentage change was 0.48 (95% CI, −0.13 to 1.59, P = 0.226) and therefore did not meet the prespecified non‐inferiority margin. However, NT‐proBNP levels did show a non‐significant trend lower in the canagliflozin group [adjusted group difference; −74.7 pg/mL (95% CI, −159.3 to 10.9), P = 0.087] and also in the subgroup with preserved LVEF [−58.3 (95% CI, −127.6 to 11.0, P = 0.098]). Conclusions This study did not meet the predefined primary endpoint of changes in NT‐proBNP levels, with 24 weeks of treatment with canagliflozin vs. glimepiride. Further research is warranted to determine whether patients with heart failure with preserved ejection fraction, regardless of diabetes status, could potentially benefit from treatment with SGLT2 inhibitors

    Rationale and design of a randomized trial to test the safety and non‑inferiority of canagliflozin in patients with diabetes with chronic heart failure : the CANDLE trial

    Get PDF
    Background: Because type 2 diabetes mellitus is associated strongly with an increased risk of cardiovascular diseases, the number of patients with diabetes with chronic heart failure is increasing steadily. However, clinical evidence of therapeutic strategies in such patients is still lacking. A recent randomized, placebo-controlled trial in patients with type 2 diabetes with high cardiovascular risk demonstrated that the SGLT2 inhibitor, empagliflozin, reduced the incidence of hospitalization for heart failure. Because SGLT2 inhibitors cause a reduction in body weight and blood pressure in addition to improving glycemic control, they have the potential to exert beneficial effects on the clinical pathophysiology of heart failure. The aim of the ongoing CANDLE trial is to test the safety and non-inferiority of canagliflozin, another SGLT2 inhibitor, compared with glimepiride, a sulfonylurea agent, in patients with type 2 diabetes mellitus and chronic heart failure. Methods: A total of 250 patients with type 2 diabetes who are drug-naĂŻve or taking any anti-diabetic agents and suffering from chronic heart failure with a New York Heart Association classification I to III will be randomized centrally into either canagliflozin or glimepiride groups (1: 1) using the dynamic allocation method stratified by age (<65, ≄65 year), HbA1c level (<6.5, ≄6.5 %), and left ventricular ejection fraction (<40, ≄40 %). After randomization, all the participants will be given the add-on study drug for 24 weeks in addition to their background therapy. The primary endpoint is the percentage change from baseline in NT-proBNP after 24 weeks of treatment. The key secondary endpoints after 24 weeks of treatment are the change from baseline in glycemic control, blood pressure, body weight, lipid profile, quality of life score related to heart failure, and cardiac and renal function. Discussion: The CANDLE trial is the first to assess the safety and non-inferiority of canagliflozin in comparison with glimepiride in patients with type 2 diabetes with chronic heart failure. This trial has the potential to evaluate the clinical safety and efficacy of canagliflozin on heart failure

    Rationale and design of a multicenter randomized study for evaluating vascular function under uric acid control using the xanthine oxidase inhibitor, febuxostat : the PRIZE study

    Get PDF
    Background: Xanthine oxidase inhibitors are anti-hyperuricemic drugs that decrease serum uric acid levels by inhibiting its synthesis. Xanthine oxidase is also recognized as a pivotal enzyme in the production of oxidative stress. Excess oxidative stress induces endothelial dysfunction and inflammatory reactions in vascular systems, leading to atherosclerosis. Many experimental studies have suggested that xanthine oxidase inhibitors have anti-atherosclerotic effects by decreasing in vitro and in vivo oxidative stress. However, there is only limited evidence on the clinical implications of xanthine oxidase inhibitors on atherosclerotic cardiovascular disease in patients with hyperuricemia. We designed the PRIZE study to evaluate the effects of febuxostat on a surrogate marker of cardiovascular disease risk, ultrasonography-based intima-media thickness of the carotid artery in patients with hyperuricemia. Methods: The study is a multicenter, prospective, randomized, open-label and blinded-endpoint evaluation (PROBE) design. A total of 500 patients with asymptomatic hyperuricemia (uric acid >7.0 mg/dL) and carotid intima-media thickness ≄1.1 mm will be randomized centrally to receive either febuxostat (10–60 mg/day) or non-pharmacological treatment. Randomization is carried out using the dynamic allocation method stratified according to age (<65, ≄65 year), gender, presence or absence of diabetes mellitus, serum uric acid (<8.0, ≄8.0 mg/dL), and carotid intima-media thickness (<1.3, ≄1.3 mm). In addition to administering the study drug, we will also direct lifestyle modification in all participants, including advice on control of body weight, sleep, exercise and healthy diet. Carotid intima-media thickness will be evaluated using ultrasonography performed by skilled technicians at a central laboratory. Follow-up will be continued for 24 months. The primary endpoint is percentage change in mean intima-media thickness of the common carotid artery 24 months after baseline, measured by carotid ultrasound imaging. Conclusions: PRIZE will be the first study to provide important data on the effects of febuxostat on atherosclerosis in patients with asymptomatic hyperuricemia

    Febuxostat and carotid atherosclerosis in asymptomatic hyperuricemia

    Get PDF
    Background An elevated level of serum uric acid (SUA) is associated with an increased risk of cardiovascular disease. Pharmacological intervention with urate-lowering agents, such as the conventional purine analogue xanthine oxidase (XO) inhibitor, allopurinol, has been used widely for a long period of time in clinical practice to reduce SUA levels. Febuxostat, a novel non-purine selective inhibitor of XO, has higher potency for inhibition of XO activity and greater urate-lowering efficacy than conventional allopurinol. However, clinical evidence regarding the effects of febuxostat on atherosclerosis is lacking. The purpose of the study was to test whether treatment with febuxostat delays carotid intima-media thickness (IMT) progression in patients with asymptomatic hyperuricemia. Methods and findings The study was a multicenter, prospective, randomized, open-label, blinded-endpoint clinical trial undertaken at 48 sites throughout Japan between May 2014 and August 2018. Adults with both asymptomatic hyperuricemia (SUA >7.0 mg/dL) and maximum IMT of the common carotid artery (CCA) ≄1.1 mm at screening were allocated equally using a central web system to receive either dose-titrated febuxostat (10–60 mg daily) or as a control-arm, non-pharmacological lifestyle modification for hyperuricemia, such as a healthy diet and exercise therapy. Of the 514 enrolled participants, 31 were excluded from the analysis, with the remaining 483 people (mean age 69.1 years [standard deviation 10.4 years], female 19.7%) included in the primary analysis (febuxostat group, 239; control group, 244), based on a modified intention-to-treat principal. The carotid IMT images were recorded by a single sonographer at each site and read in a treatment-blinded manner by a single analyzer at a central core laboratory. The primary endpoint was the percentage change from baseline to 24 months in mean IMT of the CCA, determined by analysis of covariance using the allocation adjustment factors (age, gender, history of type 2 diabetes, baseline SUA, and baseline maximum IMT of the CCA) as the covariates. Key secondary endpoints included changes in other carotid ultrasonographic parameters and SUA and the incidence of clinical events. The mean values (± standard deviation) of CCA-IMT were 0.825 mm ± 0.173 mm in the febuxostat group and 0.832 mm ± 0.175 mm in the control group (mean between-group difference [febuxostat − control], −0.007 mm [95% confidence interval (CI) −0.039 mm to 0.024 mm; P = 0.65]) at baseline; 0.832 mm ± 0.182 mm in the febuxostat group and 0.848 mm ± 0.176 mm in the control group (mean between-group difference, −0.016 mm [95% CI −0.051 mm to 0.019 mm; P = 0.37]) at 24 months. Compared with the control group, febuxostat had no significant effect on the primary endpoint (mean percentage change 1.2% [95% CI −0.6% to 3.0%] in the febuxostat group (n = 207) versus 1.4% [95% CI −0.5% to 3.3%] in the control group (n = 193); mean between-group difference, −0.2% [95% CI −2.3% to 1.9%; P = 0.83]). Febuxostat also had no effect on the other carotid ultrasonographic parameters. The mean baseline values of SUA were comparable between the two groups (febuxostat, 7.76 mg/dL ± 0.98 mg/dL versus control, 7.73 mg/dL ± 1.04 mg/dL; mean between-group difference, 0.03 mg/dL [95% CI −0.15 mg/dL to 0.21 mg/dL; P = 0.75]). The mean value of SUA at 24 months was significantly lower in the febuxostat group than in the control group (febuxostat, 4.66 mg/dL ± 1.27 mg/dL versus control, 7.28 mg/dL ± 1.27 mg/dL; mean between-group difference, −2.62 mg/dL [95% CI −2.86 mg/dL to −2.38 mg/dL; P < 0.001]). Episodes of gout arthritis occurred only in the control group (4 patients [1.6%]). There were three deaths in the febuxostat group and seven in the control group during follow-up. A limitation of the study was the study design, as it was not a placebo-controlled trial, had a relatively small sample size and a short intervention period, and only enrolled Japanese patients with asymptomatic hyperuricemia. Conclusions In Japanese patients with asymptomatic hyperuricemia, 24 months of febuxostat treatment did not delay carotid atherosclerosis progression, compared with non-pharmacological care. These findings do not support the use of febuxostat for delaying carotid atherosclerosis in this population

    Rationale and design of a multicenter randomized controlled study to evaluate the preventive effect of ipragliflozin on carotid atherosclerosis : the PROTECT study

    Get PDF
    Background: Type 2 diabetes mellitus is associated strongly with an increased risk of micro- and macro-vascular complications, leading to impaired quality of life and shortened life expectancy. In addition to appropriate glycemic control, multi-factorial intervention for a wide range of risk factors, such as hypertension and dyslipidemia, is crucial for management of diabetes. A recent cardiovascular outcome trial in diabetes patients with higher cardiovascular risk demonstrated that a SGLT2 inhibitor markedly reduced mortality, but not macro-vascular events. However, to date there is no clinical evidence regarding the therapeutic effects of SGLT2 inhibitors on arteriosclerosis. The ongoing PROTECT trial was designed to assess whether the SGLT2 inhibitors, ipragliflozin, prevented progression of carotid intima-media thickness in Japanese patients with type 2 diabetes mellitus. Methods: A total of 480 participants with type 2 diabetes mellitus with a HbA1c between 6 and 10 % despite receiving diet/exercise therapy and/or standard anti-diabetic agents for at least 3 months, will be randomized systematically (1:1) into either ipragliflozin or control (continuation of conventional therapy) groups. After randomization, ipragliflozin (50–100 mg once daily) will be added on to the background therapy in participants assigned to the ipragliflozin group. The primary endpoint of the study is the change in mean intima-media thickness of the common carotid artery from baseline to 24 months. Images of carotid intima-media thickness will be analyzed at a central core laboratory in a blinded manner. The key secondary endpoints include the change from baseline in other parameters of carotid intima-media thickness, various metabolic parameters, and renal function. Other cardiovascular functional tests are also planned for several sub-studies. Discussion: The PROTECT study is the first to assess the preventive effect of ipragliflozin on progression of carotid atherosclerosis using carotid intima-media thickness as a surrogate marker. The study has potential to clarify the protective effects of ipragliflozin on atherosclerosis

    Cross-enhancement of ANGPTL4 transcription by HIF1 alpha and PPAR beta/delta is the result of the conformational proximity of two response elements

    Get PDF
    BACKGROUND: Synergistic transcriptional activation by different stimuli has been reported along with a diverse array of mechanisms, but the full scope of these mechanisms has yet to be elucidated. RESULTS: We present a detailed investigation of hypoxia-inducible factor (HIF) 1 dependent gene expression in endothelial cells which suggests the importance of crosstalk between the peroxisome proliferator-activated receptor (PPAR) ÎČ/ÎŽ and HIF signaling axes. A migration assay shows a synergistic interaction between these two stimuli, and we identify angiopoietin-like 4 (ANGPTL4) as a common target gene by using a combination of microarray and ChIP-seq analysis. We profile changes of histone marks at enhancers under hypoxia, PPARÎČ/ÎŽ agonist and dual stimulations and these suggest that the spatial proximity of two response elements is the principal cause of the synergistic transcription induction. A newly developed quantitative chromosome conformation capture assay shows the quantitative change of the frequency of proximity of the two response elements. CONCLUSIONS: To the best of our knowledge, this is the first report that two different transcription factors cooperate in transcriptional regulation in a synergistic fashion through conformational change of their common target genes

    Direct evidence for pitavastatin induced chromatin structure change in the KLF4 gene in endothelial cells.

    Get PDF
    Statins exert atheroprotective effects through the induction of specific transcriptional factors in multiple organs. In endothelial cells, statin-dependent atheroprotective gene up-regulation is mediated by Kruppel-like factor (KLF) family transcription factors. To dissect the mechanism of gene regulation, we sought to determine molecular targets by performing microarray analyses of human umbilical vein endothelial cells (HUVECs) treated with pitavastatin, and KLF4 was determined to be the most highly induced gene. In addition, it was revealed that the atheroprotective genes induced with pitavastatin, such as nitric oxide synthase 3 (NOS3) and thrombomodulin (THBD), were suppressed by KLF4 knockdown. Myocyte enhancer factor-2 (MEF2) family activation is reported to be involved in pitavastatin-dependent KLF4 induction. We focused on MEF2C among the MEF2 family members and identified a novel functional MEF2C binding site 148 kb upstream of the KLF4 gene by chromatin immunoprecipitation along with deep sequencing (ChIP-seq) followed by luciferase assay. By applying whole genome and quantitative chromatin conformation analysis {chromatin interaction analysis with paired end tag sequencing (ChIA-PET), and real time chromosome conformation capture (3C) assay}, we observed that the MEF2C-bound enhancer and transcription start site (TSS) of KLF4 came into closer spatial proximity by pitavastatin treatment. 3D-Fluorescence in situ hybridization (FISH) imaging supported the conformational change in individual cells. Taken together, dynamic chromatin conformation change was shown to mediate pitavastatin-responsive gene induction in endothelial cells
    • 

    corecore