604 research outputs found

    Transport properties of dense deuterium-tritium plasmas

    Full text link
    Consistent descriptions of the equation of states, and information about transport coefficients of deuterium-tritium mixture are demonstrated through quantum molecular dynamic (QMD) simulations (up to a density of 600 g/cm3^{3} and a temperature of 10410^{4} eV). Diffusion coefficients and viscosity are compared with one component plasma model in different regimes from the strong coupled to the kinetic one. Electronic and radiative transport coefficients, which are compared with models currently used in hydrodynamic simulations of inertial confinement fusion, are evaluated up to 800 eV. The Lorentz number is also discussed from the highly degenerate to the intermediate region.Comment: 4 pages, 3 figure

    Study of \pi^{-}p \to \eta n at low energies in a chiral constituent quark model

    Get PDF
    A chiral quark model approach is extended to the study of the πN\pi N scattering at low energies. The process of πpηn\pi^{-}p \to \eta n near threshold is investigated. The model is successful in describing the differential cross sections and total cross section near the η\eta production threshold. The roles of the resonances in n2n\leq 2 shells are clarified. Near threshold, the S11(1535)S_{11}(1535) dominates the reactions, while the interferences from the S11(1650)S_{11}(1650) turn out to be destructive around W1.6W\lesssim 1.6 GeV. The D13(1520)D_{13}(1520) is crucial to give correct shapes of the differential cross sections. The nucleon pole term contributions are significant. The P11(1710)P_{11}(1710) plays an important role around the c.m. energy W=1.7W=1.7 GeV, it is crucial to produce an enhancement in the region of W>1.6W>1.6 GeV as suggested by the data for total cross section. The tt-channel is negligible in the reactions.Comment: 17 pages, 5 figures. Version accepted by PRC. Some changes in the t-channel due to an error in the cod

    Bis(5-amino-4-amino­carbonyl-1H-imid­azol-3-ium) (5-amino-4-amino­carbonyl-1H-imidazol-3-ium-κO)-di-μ-chlorido-hepta­chlorido-dibismuth(III) mono­hydrate

    Get PDF
    The title compound, (C4H7N4O)2[Bi2Cl9(C4H7N4O)]·H2O, was prepared by the reaction of bis­muth trichloride and 5-amino-1H-imidazole-4-carboxamide in a dilute HCl medium. The asymmetric unit contains two 5-amino-4-amino­carbonyl-1H-imidazol-3-ium cations, one edge-shared non-centrosymmetric biocta­hedral [Bi2C19(C4H7N4O)]2− dianion and a water mol­ecule. In the dianion, the planar 5-amino-4-amino­carbonyl-1H-imidazol-3-ium ligand occupies an equatorial site and is inclined at an angle of 75.7 (2)° to the Bi2(μ-C1)2 plane. The salt forms a three-dimensional network arising from hydrogen bonds between cations, anions and water mol­ecules

    The Effect of Rice Cultivars on Methane Emission From Irrigated Rice Field

    Full text link
    Rice plants have been reported to affect methane (CH4) emission from rice fields. The objectives of this study were to determine the effect of rice cultivars on CH4 emission from flooded rice and to develop crop management strategies with low emitting rice cultivars while sustaining high yield. The four rice cultivars studied were Memberamo, Cisadane, IR64, and Way Apoburu. The CH4 emissions were determined in the wet season of 2001/2002 (November-February) using an automated closed chamber technique in an irrigated field condition. Farmyard manure at the rate of 5 t ha-1 was given to the plots to ensure carbon was not limited. Root weight, root length, biomass, and number of tillers were determined at 17, 36, and 57 days after transplanting (DAT). The results showed that the mean CH4 emission was highest in the plot planted with Cisadane (94.8 kg CH4 ha-1), and the lowest with IR64 (37.7 kg CH4 ha-1). The plots treated with emberamo and Way Apoburu resulted an intermediate CH4 emission at the average of 61.1 and 58.9 kg CH4 ha-1, respectively. There was no significant difference in yield between the cultivars tested. The yield of Memberamo, Cisadane, IR64, and Way Apoburu were 5.882, 5.764, 5.873 and 6.065 t ha-1, respectively. Statistical analysis showed that there were no significant differences in the root weight and root length among cultivars. However, Cisadane gave the highest dry matter weight (222 g hill-1) at 57 DAT compared to the other cultivars (175-190 g hill-1). Plant tillers did not show significant differences between the cultivars. Regression analysis showed that CH4 flux was significantly related with root weight, root length, aboveground biomass, and number of plant tillers. This finding shows that the use of selected cultivars, such as IR64, can potentially lower CH4 emission without scarifying yield

    Quantum interface between frequency-uncorrelated down-converted entanglement and atomic-ensemble quantum memory

    Full text link
    Photonic entanglement source and quantum memory are two basic building blocks of linear-optical quantum computation and long-distance quantum communication. In the past decades, intensive researches have been carried out, and remarkable progress, particularly based on the spontaneous parametric down-converted (SPDC) entanglement source and atomic ensembles, has been achieved. Currently, an important task towards scalable quantum information processing (QIP) is to efficiently write and read entanglement generated from a SPDC source into and out of an atomic quantum memory. Here we report the first experimental realization of a quantum interface by building a 5 MHz frequency-uncorrelated SPDC source and reversibly mapping the generated entangled photons into and out of a remote optically thick cold atomic memory using electromagnetically induced transparency. The frequency correlation between the entangled photons is almost fully eliminated with a suitable pump pulse. The storage of a triggered single photon with arbitrary polarization is shown to reach an average fidelity of 92% for 200 ns storage time. Moreover, polarization-entangled photon pairs are prepared, and one of photons is stored in the atomic memory while the other keeps flying. The CHSH Bell's inequality is measured and violation is clearly observed for storage time up to 1 microsecond. This demonstrates the entanglement is stored and survives during the storage. Our work establishes a crucial element to implement scalable all-optical QIP, and thus presents a substantial progress in quantum information science.Comment: 28 pages, 4 figures, 1 tabl

    Identification and characterization of microRNAs in Clonorchis sinensis of human health significance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Clonorchis sinensis </it>is a zoonotic parasite causing clonorchiasis-associated human disease such as biliary calculi, cholecystitis, liver cirrhosis, and it is currently classified as carcinogenic to humans for cholangiocarcinoma. MicroRNAs (miRNAs) are non-coding, regulating small RNA molecules which are essential for the complex life cycles of parasites and are involved in parasitic infections. To identify and characterize miRNAs expressed in adult <it>C. sinensis </it>residing chronically in the biliary tract, we developed an integrative approach combining deep sequencing and bioinformatic predictions with stem-loop real-time PCR analysis.</p> <p>Results</p> <p>Here we report the use of this approach to identify and clone 6 new and 62,512 conserved <it>C. sinensis </it>miRNAs which belonged to 284 families. There was strong bias on families, family members and sequence nucleotides in <it>C. sinensis</it>. Uracil was the dominant nucleotide, particularly at positions 1, 14 and 22, which were located approximately at the beginning, middle and end of conserved miRNAs. There was no significant "seed region" at the first and ninth positions which were commonly found in human, animals and plants. Categorization of conserved miRNAs indicated that miRNAs of <it>C. sinensis </it>were still innovated and concentrated along three branches of the phylogenetic tree leading to bilaterians, insects and coelomates. There were two miRNA strategies in <it>C. sinensis </it>for its parasitic life: keeping a large category of miRNA families of different animals and keeping stringent conserved seed regions with high active innovation in other places of miRNAs mainly in the middle and the end, which were perfect for the parasite to perform its complex life style and for host changes.</p> <p>Conclusions</p> <p>The present study represented the first large scale characterization of <it>C. sinensis </it>miRNAs, which have implications for understanding the complex biology of this zoonotic parasite, as well as miRNA studies of other related species such as <it>Opisthorchis viverrini </it>and <it>Opisthorchis felineus </it>of human and animal health significance.</p

    Negative thermal expansion in YbMn2Ge2 induced by the dual effect of magnetism and valence transition

    Get PDF
    AbstractNegative thermal expansion (NTE) is an intriguing property, which is generally triggered by a single NTE mechanism. In this work, an enhanced NTE (αv = −32.9 × 10−6 K−1, ΔT = 175 K) is achieved in YbMn2Ge2 intermetallic compound to be caused by a dual effect of magnetism and valence transition. In YbMn2Ge2, the Mn sublattice that forms the antiferromagnetic structure induces the magnetovolume effect, which contributes to the NTE below the Néel temperature (525 K). Concomitantly, the valence state of Yb increases from 2.40 to 2.82 in the temperature range of 300–700 K, which simultaneously causes the contraction of the unit cell volume due to smaller volume of Yb3+ than that of Yb2+. As a result, such combined effect gives rise to an enhanced NTE. The present study not only sheds light on the peculiar NTE mechanism of YbMn2Ge2, but also indicates the dual effect as a possible promising method to produce enhanced NTE materials
    corecore