19,525 research outputs found

    A Time Truncated Moving Average Chart for the Weibull Distribution

    Get PDF
    A control chart of monitoring the number of failures is proposed with a moving average scheme, when the life of an item follows a Weibull distribution. A specified number of items are put on a time truncated life test and the number of failures is observed. The proposed control chart has been evaluated by the average run lengths (ARLs) under different parameter settings. The control constant and the test time multiplier are to be determined by considering the in-control ARL. It is observed that the proposed control chart is more efficient in detecting a shift in the process as compared with the existing time truncated control chart. ? 2013 IEEE.11Ysciescopu

    Dynamical self-assembly of dipolar active Brownian particles in two dimensions

    Get PDF
    Based on Brownian Dynamics (BD) simulations, we study the dynamical self-assembly of active Brownian particles with dipole–dipole interactions, stemming from a permanent point dipole at the particle center. The propulsion direction of each particle is chosen to be parallel to its dipole moment. We explore a wide range of motilities and dipolar coupling strengths and characterize the corresponding behavior based on several order parameters. At low densities and low motilities, the most important structural phenomenon is the aggregation of the dipolar particles into chains. Upon increasing the particle motility, these chain-like structures break, and the system transforms into a weakly correlated isotropic fluid. At high densities, we observe that the motility-induced phase separation is strongly suppressed by the dipolar coupling. Once the dipolar coupling dominates the thermal energy, the phase separation disappears, and the system rather displays a flocking state, where particles form giant clusters and move collective along one direction. We provide arguments for the emergence of the flocking behavior, which is absent in the passive dipolar system.TU Berlin, Open-Access-Mittel - 2020DFG, 65143814, GRK 1524: Self-Assembled Soft-Matter Nanostructures at Interface

    Mobility Increases the Data Offloading Ratio in D2D Caching Networks

    Full text link
    Caching at mobile devices, accompanied by device-to-device (D2D) communications, is one promising technique to accommodate the exponentially increasing mobile data traffic. While most previous works ignored user mobility, there are some recent works taking it into account. However, the duration of user contact times has been ignored, making it difficult to explicitly characterize the effect of mobility. In this paper, we adopt the alternating renewal process to model the duration of both the contact and inter-contact times, and investigate how the caching performance is affected by mobility. The data offloading ratio, i.e., the proportion of requested data that can be delivered via D2D links, is taken as the performance metric. We first approximate the distribution of the communication time for a given user by beta distribution through moment matching. With this approximation, an accurate expression of the data offloading ratio is derived. For the homogeneous case where the average contact and inter-contact times of different user pairs are identical, we prove that the data offloading ratio increases with the user moving speed, assuming that the transmission rate remains the same. Simulation results are provided to show the accuracy of the approximate result, and also validate the effect of user mobility.Comment: 6 pages, 5 figures, accepted to IEEE Int. Conf. Commun. (ICC), Paris, France, May 201

    The dynamics of loop formation in a semiflexible polymer

    Get PDF
    The dynamics of loop formation by linear polymer chains has been a topic of several theoretical/experimental studies. Formation of loops and their opening are key processes in many important biological processes. Loop formation in flexible chains has been extensively studied by many groups. However, in the more realistic case of semiflexible polymers, not much results are available. In a recent study (K. P. Santo and K. L. Sebastian, Phys. Rev. E, \textbf{73}, 031293 (2006)), we investigated opening dynamics of semiflexible loops in the short chain limit and presented results for opening rates as a function of the length of the chain. We presented an approximate model for a semiflexible polymer in the rod limit, based on a semiclassical expansion of the bending energy of the chain. The model provided an easy way to describe the dynamics. In this paper, using this model, we investigate the reverse process, i.e., the loop formation dynamics of a semiflexible polymer chain by describing the process as a diffusion-controlled reaction. We perform a detailed multidimensional analysis of the problem and calculate closing times for a semiflexible chain which leads to results that are physically expected. Such a multidimensional analysis leading to these results does not seem to exist in the literature so far.Comment: 37 pages 4 figure

    Do Water Fountain Jets Really Indicate the Onset of the Morphological Metamorphosis of Circumstellar Envelopes?

    Get PDF
    The small-scale bipolar jets having short dynamical ages from "water fountain (WF)" sources are regarded as an indication of the onset of circumstellar envelope morphological metamorphosis of intermediate-mass stars. Such process usually happens at the end of the asymptotic giant branch (AGB) phase. However, recent studies found that WFs could be AGB stars or even early planetary nebulae. This fact prompted the idea that WFs may not necessarily be objects at the beginning of the morphological transition process. In the present work, we show that WFs could have different envelope morphologies by studying their spectral energy distribution profiles. Some WFs have spherical envelopes that resembles usual AGB stars, while others have aspherical envelopes which are more common to post-AGB stars. The results imply that WFs may not represent the earliest stage of the morphological metamorphosis. We further argue that the dynamical age of a WF jet, which can be calculated from maser proper motions, may not be the real age of the jet. The dynamical age cannot be used to justify the moment when the envelope begins to become aspherical, nor to tell the concrete evolutionary status of the object. A WF jet could be the innermost part of a larger well-developed jet, which is not necessarily a young jet.Comment: 21 pages, 4 figures, accepted for publication in MNRA

    Competing Ground States of a Peierls-Hubbard Nanotube

    Get PDF
    Motivated by iodo platinum complexes assembled within a quadratic-prism lattice, [Pt(C2_2H8_8N2_2)(C10_{10}H8_8N2_2)I]4_4(NO3_3)8_8, we investigate the ground-state properties of a Peierls-Hubbard four-legged tube. Making a group-theoretical analysis, we systematically reveal a variety of valence arrangements, including half-metallic charge-density-wave states. Quantum and thermal phase competition is numerically demonstrated with particular emphasis on doping-induced successive insulator-to-metal transitions with conductivity increasing stepwise.Comment: 6 pages, 4 figures. to be published in Europhys. Lett. 87 (2009) 1700

    Distribution of equilibrium free energies in a thermodynamic system with broken ergodicity

    Full text link
    At low temperatures the configurational phase space of a macroscopic complex system (e.g., a spin-glass) of N1023N\sim 10^{23} interacting particles may split into an exponential number Ωsexp(const×N)\Omega_s \sim \exp({\rm const} \times N) of ergodic sub-spaces (thermodynamic states). Previous theoretical studies assumed that the equilibrium collective behavior of such a system is determined by its ground thermodynamic states of the minimal free-energy density, and that the equilibrium free energies follow the distribution of exponential decay. Here we show that these assumptions are not necessarily valid. For some complex systems, the equilibrium free-energy values may follow a Gaussian distribution within an intermediate temperature range, and consequently their equilibrium properties are contributed by {\em excited} thermodynamic states. This work will help improving our understanding of the equilibrium statistical mechanics of spin-glasses and other complex systems.Comment: 7 pages, 2 figure

    A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu

    Full text link
    Successful synthesis of room-temperature ferromagnetic semiconductors, Zn1x_{1-x}Fex_{x}O, is reported. The essential ingredient in achieving room-temperature ferromagnetism in bulk Zn1x_{1-x}Fex_{x}O was found to be additional Cu doping. A transition temperature as high as 550 K was obtained in Zn0.94_{0.94}Fe0.05_{0.05}Cu0.01_{0.01}O; the saturation magnetization at room temperature reached a value of 0.75μB0.75 \mu_{\rm B} per Fe. Large magnetoresistance was also observed below 100100 K.Comment: 11 pages, 4 figures; to appear in Appl. Phys. Let
    corecore