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Dynamical self-assembly of dipolar active
Brownian particles in two dimensions

Guo-Jun Liao, *a Carol K. Hall b and Sabine H. L. Klapp*a

Based on Brownian Dynamics (BD) simulations, we study the dynamical self-assembly of active Brownian

particles with dipole–dipole interactions, stemming from a permanent point dipole at the particle center. The

propulsion direction of each particle is chosen to be parallel to its dipole moment. We explore a wide range of

motilities and dipolar coupling strengths and characterize the corresponding behavior based on several order

parameters. At low densities and low motilities, the most important structural phenomenon is the aggregation

of the dipolar particles into chains. Upon increasing the particle motility, these chain-like structures break, and

the system transforms into a weakly correlated isotropic fluid. At high densities, we observe that the motility-

induced phase separation is strongly suppressed by the dipolar coupling. Once the dipolar coupling dominates

the thermal energy, the phase separation disappears, and the system rather displays a flocking state,

where particles form giant clusters and move collective along one direction. We provide arguments for

the emergence of the flocking behavior, which is absent in the passive dipolar system.

1 Introduction

Self-propelled particles are capable of converting energy from
an internal source or the surroundings into their own active
motion.1,2 It is now well established that active motion
of individual particles, combined with different types of inter-
actions among these particles, can lead to remarkable collective
behavior. For example, repulsive interactions alone can generate
the so-called motility-induced phase separation, where large,
densely packed clusters coexist with freely moving particles.3

A standard model describing this non-equilibrium phase tran-
sition is that of active Brownian particles, where each particle
moves with a constant propulsion speed along a direction
subject to white noise, and the interactions are purely steric
and isotropic. Clearly, one could expect more complex behavior
in active systems with anisotropic interactions. This situation
has been investigated by a large number of theoretical and
simulation studies.4–7 A famous example in this direction is the
Vicsek model, where active, point-like particles interact such
that they tend to align their velocities with those of their
neighbors. The resulting collective behavior includes traveling
bands6 and flocking.8 A further representative system is a
suspension of active Brownian particles with polar interactions
favoring parallel orientations of the velocities irrespective of the

spatial configuration. This system displays a state with moving
lanes and bands even at low densities, where conventional
active Brownian particles do not show significant behavior.9

Further, at high densities, the polar coupling favors motility-
induced phase separation compared to the non-polar case.10

In most studies of active systems with anisotropic interac-
tions, they are assumed to be of short range.11 Less effort has
been spent on active systems involving long-range anisotropic
interactions, such as dipole–dipole interactions stemming from
intrinsic (permanent) dipole moments or dipoles induced by an
electric or magnetic field.12 A notable feature of dipolar inter-
actions is that they depend not only on the orientations of the
two involved particles, but also on their configuration in space.
Specifically, two particles with point dipoles at their center
tend to align head-to-tail, where the arrowhead of one dipole
moment is directed toward the arrowtail of the other dipole. In
contrast, particles configured side by side favor antiparallel
alignment. Due to this complexity, one would expect a system
of dipolar active particles to show macroscopic structures
significantly different from active models with simple polar
interactions, such as the Vicsek model8 and its variants.

There are some recent studies, which have focused particularly
on the dynamics of dipolar active colloids. For example, ref. 13
and 14 have studied the structural transformation of small dipolar
clusters under the impact of activity starting from different
(meta)stable configurations, either neglecting13 or including14

hydrodynamic interactions. Another example is a system
of spherical, ferromagnetic rollers confined to a fluctuating
surface. Here it has been shown, both, experimentally and in
simulations, that these particles can exhibit swarming or vortex
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patterns when energized by a vertical alternating field.15 Owing
to the interplay between self-propulsion and dipolar interac-
tions, these vortices persist even on a flat surface.16 In nature,
magnetotactic bacteria are known to sense the earth’s magnetic
field and move along or against the field direction.17–19 Experi-
ments have observed that these bacteria, when confined in a
microfluidic channel and placed under an external magnetic
field, display clustering behavior along the channel.20 The
underlying mechanism of this clustering instability was also
investigated analytically and in simulations.21 We also mention
dipole-like, active Janus particles with two screened electric
charges in each hemisphere. It is found that these particles can
self-organize into fingerprint-like patterns at high densities.22

Moreover, an external electric or magnetic field can induce two
point dipoles in the respective hemispheres of a Janus particle
and thereby further complicate the interactions between particles.
By fine-tuning the interactions, it has been reported that the
external field can be used to control the collective behavior of
Janus particles.23,24 However, these latter models involve even
more complex anisotropic interactions as compared to the
purely dipolar case. Indeed, the collective behavior of large
ensembles of the simplest dipolar active model, that is, dipolar
active Brownian particles, is not yet explored. This is the
motivation for the present work.

Specifically, we present Brownian Dynamics simulation
results for the dynamical self-assembly of a two-dimensional
system of active particles, where each particle has a permanent
point dipole moment oriented in the plane. In addition, each
particle is subject to a self-propulsion force, which is directed
along the dipole, as well as to thermal noise. We investigate the
collective behavior of our model system for three density regimes,
considering a wide range of motilities and dipolar coupling
strengths. Our model can be realized, e.g., by Janus particles with
a magnetic material coated on one of the hemispheres.25,26 In
that case, both the dipole moment and the propulsion force of
the Janus particle are directed along its symmetric axis.

For all three densities we present state diagrams illustrating
the complex interplay between essentially three phenomena:
chain formation (which already occurs in the passive case),
motility-induced phase separation, and polar ordering.

The remainder of this paper is organized as follows. In
Section 2 we present our model of dipolar active particles and
the simulation details, as well as the target quantities and order
parameters investigated. Based on analysis of these quantities
for a range of parameters, we discuss the collective behavior of
the model system in Section 3. Finally, in Section 4 we sum-
marize our findings.

2 Model and methods of investigation
2.1 Model system

Our dipolar active system consists of N disk-shaped Brownian
particles with diameter s dispersed in a monolayer in the
xy-plane. Each particle carries a fluctuating point dipole moment
li (i = 1,. . .,N) located at its center. For passive monolayers of

dipolar disks, it is well established that the particles tend to
orient along in-plane directions to form chains and rings,27–31

or dense ordered states,27,32–34 if the dipolar interactions are
sufficiently strong. Having this in mind, we assume beforehand
that li lies in the xy-plane, i.e., fluctuations in z-direction are
neglected. To model the self-propulsion, we assume that each
particle is subject to a force Fi, which has a constant magnitude
and is directed along li at each instant of time.

The pair potential between particles located at positions ri

and rj (i a j) is of the form

upair(rij,li,lj) = usr(rij) + udd(rij,li,lj), (1)

where the first term on the right-hand side stands for the short-
range steric repulsion (sr), which only depends on the distance
rij = |rij| = |rj � ri|. We assume that the steric repulsion can be
described by the Weeks–Chandler–Anderson potential

usrðrijÞ ¼
4e

s
rij

� �12

� s
rij

� �6

þ1
4

" #
; if rij o rc;

0; else:

8>><
>>: (2)

In this study, we set the length unit to be s and fix
the repulsive strength e* = be = 10, where the thermal energy,
b�1 = kBT, is set to be the energy unit (with kB being Boltzmann’s
constant and T being the temperature). This potential is
truncated at the cut-off radius rc = 21/6s, such that eqn (2)
and its derivative vanish to zero continuously at the truncation
point. The last term in eqn (1) represents the (long-range)
dipole–dipole interaction. Its functional form is given by

udd rij ; li; lj

� �
¼

li � lj

r3ij
� 3

li � rij
� ��

lj � rij
�

r5ij
: (3)

We define the dipolar coupling strength as l = bm2s�3 with m
being the magnitude of a dipole moment, i.e., li = ml̂i.

2.2 Brownian dynamics simulation

To investigate the system’s dynamical behavior, we perform
conventional Brownian Dynamics (BD) simulations without
hydrodynamic interactions. The motion of the ith particle is
then determined by the coupled Langevin equations35 for its
position ri and orientation êi = (cosci,sinci)

T,

:
ri = bD[F0êi � rri

Ui + ni(t)], (4)

_ci = bDr[�qci
Ui + Gi(t)], (5)

where the dots denote time derivatives and ci is the polar angle.
In eqn (4) and (5), the potential energy for the ith particle is
given by

Ui ¼
XN

j¼1; jai

upair rij ; li; lj

� �
; (6)

with upair being defined in eqn (1). Since the shape of each particle
is modeled as a disk, we set the translational diffusion tensor
D = DtI, where Dt is the (isotropic) translational diffusion constant
and I is the 2 � 2 identity matrix. Correspondingly, Dr denotes
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the rotational diffusion constant. As described in ref. 36, we find
that the relationship between these two diffusion constants of
a hard sphere in the low Reynolds number regime is given via
Dr = 3Dt/sh

2. We also define the diameter of an effective (eff)
hard sphere via seff ¼

Ð1
0 1� exp �busrðrÞ½ �ð Þdr. With the repul-

sive strength e* = 10 considered in the present system, seff E
1.07851s. By choosing sh = seff, we obtain Dr = 2.57914Dt/s

2.
In eqn (4), the effective propulsion force, which drives the

active motion, is given by Fi = F0êi with êi = l̂i. For simplicity, in
the remainder of this work we present the impact of the
effective propulsion force via the motility v0 = bDtF0. Finally,
the random force ni(t) and torque Gi(t) for the ith particle are
zero-mean Gaussian white noise, which satisfy niðtÞ � njðt 0Þ

� 	
¼

2dijdðt� t 0ÞI=ðDtb2Þ and hGiðtÞGjðt 0Þi ¼ 2dijdðt� t 0Þ=ðDrb2Þ. The
angle brackets h� � �i denote ensemble average, and the symbol
# represents dyadic product.

Eqn (4) and (5) are solved via the Euler–Maruyama method37

with the discrete time step Dt = 2 � 10�5t, where t is the
Brownian diffusion time, given by t = s2/Dt. We choose a
quadratic box with side length Lx = Ly = L, and we use periodic
boundary conditions in both directions. In order to treat the
long-range dipole–dipole interactions, we employ a two-
dimensional (2D) Ewald summation, as outlined in Appendix A.1.
The particle number is set to N = 1156, unless otherwise stated.
All simulations are started with randomly oriented particles
located on a square lattice. A typical run then consists of at
least 5 � 105 steps for reaching a steady state, followed by a
production period of 5 � 105 steps. The statistical properties of
the dipolar particles (see Section 2.3) are measured every
500 steps. The simulations are carried out at three values of
the mean area fraction F = Npseff

2/(4L2), where the area of a
single particle is defined as pseff

2/4. Specifically, we consider
the values F = 0.12, F = 0.23, and F = 0.58 (for the exact values,
see note ref. 38). To investigate the impact of activity, we
perform simulations at different dimensionless propulsion
speeds v0* = v0s/Dt and various dipolar coupling strengths l.
We note that v0* is indeed the same as the commonly used
Péclet number Pe.3,39,40

2.3 Target quantities

In this section we introduce the target quantities which will
later be used to characterize the system’s behavior. The choice
of these quantities is inspired by earlier research on non-
dipolar active systems on the one hand, and passive dipolar
systems on the other hand.

2.3.1 Clustering behavior. It is well established that active
particles with purely repulsive interactions have a tendency to
form large clusters and even phase-separate if the motility is
sufficiently high (motility-induced phase separation).39,41–43 We
would therefore expect that the present system displays similar
behavior at least at low dipolar coupling strengths, i.e., small
values of l. To characterize the clustering behavior of the
dipolar active particles, we perform a cluster size analysis based
on a simple distance criterion: Two particles are regarded as
being in contact if their center-to-center distance is smaller

than a distance rL. A cluster is then a set of particles that are
in contact with each other. We quantify the cluster formation by

fc = hnlcli/N, (7)

where nlcl denotes the number of particles in the largest cluster.
The quantity fc approaches 0 in a state with particles being
‘‘essentially uncorrelated’’, where not only the one-particle
density is a constant, but also the particle correlations (mea-
sured by g(r)) are weak. Further, fc is close to zero in a state
with finite-sized chains or clusters with a size much smaller
than N. In contrast, fc E1 when the active particles form
‘‘giant’’ clusters with a size comparable to N.3 We choose rL

as the distance corresponding to the first peak in the radial
distribution function of a corresponding ‘‘reference system’’
(v0* = 0, l = 0) at the given density. In this way we can
systematically investigate the impact of the motility and dipolar
coupling without changing the cluster criteria. As a result, we
obtain rL E 1.16s for F = 0.12, rL E 1.13s for F = 0.23, and
rL E 1.12s for F = 0.58 (for the exact values, see note ref. 44).

2.3.2 Global orientational ordering. The appearance of
global orientational order in passive systems of dipolar parti-
cles has a long history. In three dimensions, the occurrence of
ferromagnetic liquid and solid states has been confirmed both
by computer simulations45 and by theory.46 In spatially con-
fined systems, the situation is less clear. A ferromagnetic state
has indeed been observed in slab-like systems composed of
three and more layers of dipolar particles.32,47 Systems with less
than three layers have been considered in ref. 47. There, one
did not find clear hints for the ferromagnetic order in very thin
films, consistent with other studies.48,49

The behavior of the global orientational ordering has also
been investigated in models of self-propelled particles with
‘‘velocity-alignment’’ interactions, such as the Vicsek model8

and its variants (see, e.g., ref. 9). In these systems, one observes
so-called flocking states, where particles gather together and move
collectively toward a certain direction. In the present system, the
orientational (dipolar) interaction is more complicated (than the
Heisenberg-like interactions in the Vicsek model); still, one could
imagine that activity-induced flocking states also emerge in the
dipolar active system. To this end we consider (as is common in
the literature on flocking states9) the parameter

fe ¼
1

N

XN
i¼1

êi














* +
; (8)

which corresponds to the magnitude of the average orientation.
This order parameter is unity if all particles self-propel toward
the same direction, and zero if the particle orientations are
uncorrelated.

2.3.3 Chain formation. At low densities, passive particles
with strong dipole–dipole interactions (l 4 1) are known to
self-assemble into chains and rings.28,29,45,50–57 The reason is
easily seen from eqn (3): Considering two dipolar spheres
separated by a distance s, the configuration with the lowest
energy is the head-to-tail configuration (with udd = �2m2s�3). In
contrast, if the particles are arranged side by side, the energy
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reaches a maximum for parallel orientation (with udd = m2s�3),
suggesting that such a configuration is energetically unfavorable.

To characterize chain formation in the dipolar active system,
we use different strategies depending on the density regime
considered. The first strategy is adequate for low densities
(F t 0.23), where the chains can essentially be considered as
isolated objects. In this situation, we consider a chain as a set
of, at least, three particles which are mutually ‘‘bonded.’’
Specifically, two particles i, j are regarded as ‘‘bonded’’ in the
chain, if the following criteria are fulfilled: |rij| r rp, l̂i�l̂j 4 0,
and (l̂i�rij)(l̂j�rij) 4 0. Here, rp = 1.25s is set to a distance
between the location of the first peak and the first valley of the
pair correlation function.58–60 Based on these rules, we quantify
the low-density chain formation via the parameter

fp = hNpi/N, (9)

where Np is the total number of particles which reside in
chains. In the context of aggregating molecular systems, fp is
often called the degree of polymerization.

At high densities (e.g., F = 0.58), the particles are obviously
closer to each other, and the string-like structures are no longer
isolated. This causes the degree of polymerization fp to no
longer be appropriate to characterize the self-assembly. To
overcome this difficulty, we propose a different order parameter
to describe the chain formation quantitatively. The starting
point is the dipole–dipole correlation function

glðr?; rkÞ ¼

P
iaj

l̂i � l̂jd r? � r?ij

� �
d rk � r

k
ij

� �* +

P
iaj

d r? � r?ij

� �
d rk � r

k
ij

� �* + ; (10)

where the longitudinal and transverse displacement of particle

j relative to i is r8ij = rij�l̂i and r?ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrij j2 � rij � l̂i

� �2q
, respec-

tively. To extract the angular dependence at short distances, we
transform the Cartesian coordinates employed in eqn (10) to

polar coordinates by using r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r?2 þ rk2

q
and y = atan2(�r>,r8),

and compute the function

~gl yð Þ ¼
Ð rs
0 glðr; yÞrdrÐ rs

0 rdr
: (11)

Here, the distance rs is set to rs = L/8 E 5s such that rs is
much smaller than the half of the box size (which corresponds
to the length scale of the periodic boundary conditions). In the
presence of chain-like structures with head-to-tail alignment of

neighboring particles, we expect the angular correlation func-
tion, g̃l(y), to display positive maxima both, in front of and
behind the reference particle (i.e., at y = 0 or p). In contrast, the
dipole moments of the particles on the right- and left-hand side
of the reference particle should remain rather uncorrelated
(i.e., g̃l(y) E 0 for y = p/2 or �p/2). With this picture in mind, we
measure the quantity

Z = g̃l(ymax) � g̃l(ymin), (12)

where g̃l(y) reaches its maximum and minimum, respectively,
at y = ymax and y = ymin. By properly choosing a threshold value
Zthres, we define the dipolar particles as exhibiting chain-
like structure when Z Z Zthres. As will be discussed in more
detail in Section 2.3.3, a reasonable value for Zthres at F = 0.58
is Zthres = 0.17.

3 Simulation results

Based on the target quantities described in Section 2.3, we can
classify the states observed in our BD simulations performed at
three densities and at various values of the motility v0* and the
dipolar coupling strength l. In the following Section 3.1–3.3 we
discuss, for each density, the state diagram in the (v0*, l) plane.
Specifically, we identify five states whose characteristics are
summarized in Table 1.

3.1 The low density regime (U = 0.12)

We start by considering the state diagram in the low-density
regime, taking F = 0.12 as a representative example, see Fig. 1.
In the absence of dipolar coupling (l = 0), non-dipolar active
particles at such a low density typically display a homogeneous
isotropic fluid state, without significant translational correla-
tions or orientational ordering.3 As long as the dipolar coupling
strength remains relatively small (lt 4), the system still shows
the same homogeneous isotropic fluid state for all motilities
considered. In contrast, when l exceeds a value of about 6, the
dipolar active particles form chain-like structures provided that
the motility is below a critical motility v0,c*(l), whose value
depends on l. Above this critical motility v0,c*(l), the chain-like
structures found at smaller motilities break, and the system
becomes homogeneous and isotropic. As Fig. 1 reveals, v0,c*(l)
increases with increasing l. As a visualization of the impact of
motility on dipolar active particles at a high coupling strength,
such as l = 10, we plot in Fig. 2 representative snapshots. At
v0* = 0, nearly all particles are bound into chains and rings, as it
is typical for passive dipolar particles in 2D.27 With increasing

Table 1 Characterization of the states of dipolar active particles according to the order parameters defined in Section 2.3

State Clustering Orientational ordering

Chain formation

F t 0.23 F = 0.58

Homogeneous, isotropic fluids fc r 0.5 fe r 0.5 fp r 0.5 Z r 0.17
Chain-like structures fc r 0.5 fe r 0.5 fp 4 0.5 Z 4 0.17
Micro-flocking fc r 0.5 fe 4 0.5 —
Macro-flocking fc 4 0.5 fe 4 0.5 —
Motility-induced clustering fc 4 0.5 fe r 0.5 —
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v0* the ring structures are seemingly more abundant, as can be
seen in Fig. 2(a–c). Further increase in v0* eventually causes the
chain-like structures to break into fragments of short chains
and single particles, as shown in Fig. 2(d).

To quantitatively characterize the motility-induced destruc-
tion of chain-like structures, we plot in Fig. 3 the degree of
polymerization fp as a function of the motility v0* for various
coupling strengths l. In the absence of dipole–dipole interac-
tions (l = 0), particles do not self-assembly into chain-like
structures, still we observe a slight increase in fp [see eqn (9)]

upon increasing motilities v0*. This can be attributed to the
dynamical clustering of active Brownian particles into small
(finite-sized) aggregates.3,36,61 Indeed, if the particles inside
these finite-sized clusters fulfill our criteria of being bonded,
the order parameter fp will be non-zero (yet small), despite the
fact that dipole–dipole interactions are absent. Once the
dipole–dipole interactions are introduced, pronounced chain-
like structures appear for coupling strengths l \ 6 and low
motilities v0*, giving rise to large values of fp (fp E 1). Upon an
increase in the motility, the degree of polymerization fp

gradually decreases, reflecting that the self-propulsion opposes
the formation of chain-like structures. This behavior resembles
that seen in passive, dilute systems of self-assembled dipolar
particles, when the temperature is increased.62 In this sense,
the particle motility in the active dipolar system may be viewed
as an analog to the temperature in the passive system.

The degree of polymerization fp only describes the chaining
behavior globally. To supplement our analysis of chain for-
mation, we measure the chain size distribution function P(n),
which represents the probability that a randomly selected chain
consists of n particles. In the presence of chain formation, the
simulated systems usually contain several long chains and
many short chains, such that P(n) becomes very small at large
n. Therefore, we plot in Fig. 4 the chain size distribution weighted
by n, where nP(n) is proportional to the probability that a
randomly selected particle belongs to a chain with a size n.
As seen in Fig. 4(a), the weighted distribution curves of non-
dipolar particles vanish at around a chain size n t 10, and
the values slightly increase with increasing motilities. This is
consistent with the aforementioned dynamical clustering. The
corresponding functions at large dipolar coupling strengths
(l = 10) look very different, as shown in Fig. 4(b). Here, we
observe a broad peak between 10 t n t 100 at v0* = 0,
reflecting formation of long chains. Upon an increase in the
motility, this peak is gradually shifted to a smaller chain size.

Fig. 1 State diagram of dipolar active particles in the (v0*, l) plane at F = 0.12.
The points on the diagram indicate the parameter combinations used in the
simulations. At F = 0.12, we have observed homogeneous, isotropic fluid
states (black dots) and chain-like structures (blue crosses).

Fig. 2 Representative simulation snapshots at F = 0.12. Particles are
colored according to their dipole orientations as indicated by the color
ring in the inset.

Fig. 3 Degree of polymerization fp as a function of the motility v0* at
F = 0.12 for the coupling strength l = 0 (black circles), 4 (red squares),
6 (green diamonds), and 10 (blue triangles). The dashed horizontal line at
fp = 0.5 marks our criterion for a state with chain-like structures (see
Table 1). The solid lines are guides to the eye.
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Finally, this peak disappears once v0* \ 60. This suggests
a vanishing of chains with the most probable size at large
values of v0*.

Inspecting again Fig. 2(d) we see that even at the largest
coupling strength considered, the dipole moments do not align
on a length scale comparable to that of the simulation
box, regardless of the values of v0*. In other words, there is
no pronounced global orientational order. Indeed, through
measuring the orientational order parameter fe, we confirm
that fe remains small (fe o 0.5) for the parameter combina-
tions explored in Fig. 1, indicating that the systems are globally
isotropic at low densities.

3.2 The intermediate density regime (U = 0.23)

At the density F = 0.23, the state diagram (see Fig. 5) at small
and intermediate motilities (v0* t 20) is very similar to that at
F = 0.12 (see Fig. 1): For weakly coupled systems (l t 3), we
observe a homogeneous and isotropic fluid state, whereas
strong dipolar coupling leads to chain-like structures. This is
visualized by the simulation snapshots presented in Fig. 6(a)
and (c). For these ‘‘nearly passive’’ systems, the main difference
compared to the dilute systems in Fig. 1 is that the change from
the homogeneous isotropic fluid state into the chain-like state

occurs at a somewhat smaller value of l. This is plausible,
because the higher density leads to a smaller mean separation
between the particles and thus, to a higher probability for chain
formation.

We now turn to the impact of the motility. At small values of
l, an increase in v0* toward high values leads to the formation
of finite-sized clusters [see Fig. 6(b)] which are, however, not
stable. Thus, the system remains homogeneous and isotropic
on average. This finding is consistent with earlier research on
active Brownian particles. In particular, the phenomenon of

Fig. 4 Weighted distribution of the chain size at F = 0.12 for motilities
v0* = 0 (black circles), 20 (red squares), 40 (green diamonds), 60 (blue
triangles up), 80 (orange triangles down), and 100 (brown crosses) with the
coupling strength l = 0 (a) and l = 10 (b).

Fig. 5 State diagram of dipolar active particles in the (v0*, l) plane at
F = 0.23. The points on the diagram indicate the parameter combinations
used in the simulations. At F = 0.23, we have observed homogeneous,
isotropic fluid states (black dots), micro-flocking (green triangles), and
chain-like structures (blue crosses).

Fig. 6 Representative simulation snapshots at F = 0.23. Particles are
colored according to their orientations as indicated by the color ring in
the inset.
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motility-induced phase separation, accompanied by formation
of ‘‘giant’’ clusters (fc E 1), is known to occur only at higher
densities.3 As Fig. 5 reveals, the picture changes if the dipolar
coupling becomes larger. Consider, e.g., the case l = 6. Increasing
the motility from zero, the chain-like structures observed at small
v0* break [see Fig. 6(c)], and the particles instead form small
clusters characterized by the same orientation [see Fig. 6(d)].
More quantitatively, the clustering parameter fc remains small
(fc o 0.5) but the orientational order parameter fe reaches
values above 0.5.

The full behavior of the orientational order parameter fe as
function of v0* is shown in Fig. 7. For strongly coupled systems
(l Z 3), the order parameter abruptly changes from (essentially)
zero to large values at a ‘‘critical’’ motility v0,c*(l) E 20. We take
this as an indication for a motility-induced formation of ordered,
yet small, clusters. According to Table 1, this is characteristic of a
‘‘micro-flocking’’ state. We recall that, for active particles,
the development of average alignment between neighboring
particles implies that they move along the same direction. To
explore whether these small clusters are indeed ‘‘microscopic’’
structures, we measured the cluster size distribution. It turns out
that the characteristic cluster size n0 does not scale up with the
system size N (see the detailed analysis in Appendix A.2).

Inspecting Fig. 7 again, it is found that for systems at an
intermediate coupling strength l = 2, the order parameter fe

gradually increases from zero as v0* \ 100, suggesting that
the ‘‘micro-flocking’’ state might still appear. However, further
increase in v0* requires to employ even smaller simulation time
steps Dt o 2 � 10�5t, so as to prevent the numerical instability.
Combining this aspect with the time-consuming Ewald
summation, it turns out that the simulations become compu-
tationally unfeasible for investigating the flocking state transi-
tion at small dipolar coupling strengths (l o 3).

A behavior similar to the ‘‘micro-flocking’’ state has been
previously observed in systems of active Brownian disks with

polar alignment.9 Indeed, the density F = 0.23 considered here
is close to the effective packing fraction f* = 0.256 defined in
ref. 9, where a comparable state with ‘microscopic’ polar clusters
has been discovered at high motilities and intermediate polar
coupling. Upon further increase in polar coupling, the system in
ref. 9 displays macroscopic structures, such as moving patterns
of bands or lanes. Here, we did not find such patterns in the
parameter range explored. In this context, we also mention a
state observed in the Vicsek model at low densities and low noise
(yielding strong alignment).8

In this state, the point-like particles form small groups
within which the particles move together along one (random)
direction. However, the system does not show global ordering.
In both of these models, i.e., active polar disks and the Vicsek
model, the particles favor alignment of the propulsion direction
with their neighbors, independent of their relative positions.
This is different from the particles considered here whose
interaction depends not only on the relative alignment but also
on their configuration.

In order to gain a deeper insight into the flocking behavior
of the present system, we draw in Fig. 8(a–d) sketches of the
motion of two highly motile, strongly coupled particles starting
from four representative configurations. The initial configura-
tions (related to time t0) in Fig. 8(a) and (b) are those with the
lowest dipolar interaction energy. These configurations are
therefore stable (up to thermal fluctuations) in the passive
case. Upon switching on the motility (v0* 4 0), the particles

Fig. 7 Global polarization fe as a function of the motility v0* at F = 0.23
for the coupling strength l = 0 (black circles), 2 (red squares), 3 (green
diamonds), 4 (blue triangles up), and 6 (orange triangles down). The dashed
line indicates the value corresponding to the emergence of flocking states
(see Table 1). The solid lines are guides to the eye.

Fig. 8 (a–d) Sketches of the motion of two dipolar active particles in
three time steps (t0 o t1 o t2) starting from different representative
configurations. The dashed lines indicate the trajectories of the particles.
(e) A scheme of a collision event of two short chains, consisting of aligned
dipolar active particles.
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in the head-to-tail configuration [see Fig. 8(a)] will move along a
straight line in the same direction (as already argued in ref. 13),
until thermal fluctuations set in. We thus consider this configu-
ration as relatively stable not only in the passive, but also in the
active case. This is different in the antiparallel side-by-side
configuration depicted in Fig. 8(b) at t0. Here, activity leads to
motion in opposite direction, yielding this configuration
unstable. In Fig. 8(c), the initial configuration at t0 is energeti-
cally unstable. Still, at least for short time, one expects the
particles to move together along the same direction until the
dipolar repulsion drives them away from one another. Finally, in
Fig. 8(d) the initial configuration is a slightly distorted (induced
by rotational noise) head-to-head configuration. This leads to a
strong dipolar torque which, combined with strong activity,
pushes the particles apart. Combining these arguments, we
conclude that the most stable configuration for two dipolar
active particles is the head-to-tail alignment. While this is similar
to the passive case, a major difference is that the antiparallel
side-by-side configuration [Fig. 8(b)] breaks immediately apart
when the particles become active, yielding this configuration
unstable. At low densities, we therefore expect to find short
straight chains moving along their individual long axis, consis-
tent with the observation in the Fig. 2(d). Upon an increase in the
density, short chains collide with each other more frequently
than at low densities. As explained above, antiparallel alignment
of the short chains is not stable. Therefore, once two short
chains collide, they tend to align along the same direction and,
thus, form a dynamical polar cluster, as illustrated in Fig. 8(e). At
a sufficiently high density (e.g., F\ 0.23), the frequent collisions
between short chains finally lead to a ‘‘micro-flocking’’ state, in
which the dipolar active particles form finite-sized clusters with
a polar order [see Fig. 6(d)]. This is fundamentally different from
the alignment mechanism in other models such as the ones with
ferromagnetic-like interactions, where the configuration at t0 in
Fig. 8(c) is kinetically stable.9,10

3.3 The high density regime (U = 0.58)

At high densities such as F = 0.58, there are three major
phenomena interfering with one another: motility-induced
phase separation, polar ordering, and chain formation. In the
following Sections 3.3.1–3.3.3, we discuss these issues in detail.

3.3.1 Motility-induced clustering. Fig. 9 shows the state
diagram at F = 0.58 in the plane spanned by motilities v0* and
dipolar coupling strengths l. We start by investigating the
regime of small l. Specifically, we are interested in the impact
of dipolar interactions on the motility-induced phase separa-
tion known from conventional (non-dipolar) active particles.
Indeed, as the motility v0* increases from zero, non-dipolar
active Brownian particles (l = 0) undergo a transition from a
homogeneous, isotropic fluid state into a state with large,
dense clusters coexisting with freely moving colloids in the
dilute region, as shown in Fig. 9, 10(a) and (b). This behavior,
generally known as motility-induced phase separation, occurs
even if attractive interactions are absent in the model.39,42

The motility-induced phase separation can be explained by a
self-trapping mechanism: When a highly motile particle enters

into a dense region occupied with other particles, this particle
is temporally slowed down due to frequent collisions. Such
a slowing-down effect makes this region even denser, thus
creating a positive feedback loop which leads to the formation
of giant clusters.39 We note that the particle orientations in the
two phases are essentially uncorrelated for non-dipolar parti-
cles (l = 0), as seen in Fig. 10(b).

Fig. 9 State diagram of dipolar active particles in the (v0*, l) plane
at F = 0.58. The points on the diagram indicate the parameter combinations
used in the simulations. At F = 0.58, we have observed homogeneous,
isotropic fluid states (black dots), motility-induced clustering (red squares),
macro-flocking (orange diamonds), micro-flocking (green triangles),
and chain-like structures (blue crosses). The region surrounded by the dashed
lines indicates a parameter regime where the simulations did not reach
a steady state.

Fig. 10 Representative simulation snapshots at F = 0.58. Particles
are colored according to their orientations as indicated by the color ring
in the inset.
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To get a first impression of the impact of dipole–dipole
interactions on the clustering behavior, we plot in Fig. 11 the
fraction of the largest cluster, fc [see eqn (7)], as a function of
the motility v0* for various coupling strengths l. Consistent
with the motility-induced phase separation, the curves for non-
dipolar and weakly coupled active particles (l = 0–1) display a
sharp increase from zero at v0* E 20 and reach large values
(fc E 0.8) at v0* = 100. The curves reach fc = 0.5 at larger v0*
with increasing l, which is also reflected by the boundary
between black dots and red squares in Fig. 9. For strong dipolar
coupling (l \ 2), the values of fc at high motilities remain in
the same range (fc E 0.8, indicating again formation of large
clusters), but the increase in fc at small v0* is much less
pronounced. This already indicates a strong impact of dipolar
interactions. For more detailed analysis of the clustering behavior,
we discuss the cluster size distribution in Appendix A.2.

To gain further information, we calculate position-resolved
local area fractions, f, based on a Voronoi tessellation.36,40 (We
note that, contrary to ref. 36, we did not perform a short time
average of f, since the polar clusters characterizing the dense
state migrate over time and, therefore, are not stationary within
the short-time interval. The flocking behavior will be discussed
later in detail in Section 3.3.2.) Fig. 12 shows the probability
distribution of the local area fractions, P(f), for different
coupling strengths at v0* = 100. For non-dipolar active particles
(l = 0), P(f) reveals a clear double-peak structure that reflects
the separation between the dilute and the dense phase. The
coexisting densities correspond to the location of the two local
maxima of P(f). Upon an increase in the coupling strength up
to l = 2, the double-peak structure gradually disappears.
Instead, we observe the emergence of a single peak located at
a density slightly larger than the mean density (F = 0.58), as well
as a broad shoulder on the left. This suggests the disappearance
of the phase separation observed at zero and small l.

The same conclusion can be drawn from Fig. 13, where we
plot the coexisting densities in the (v0*, f) plane for various l.

The location of the high-density branch at l = 0 can be
explained as follows: At high motilities v0*, the non-dipolar
system (l = 0) exhibits ‘‘giant’’ clusters, composed of randomly
oriented particles [see Fig. 10(b)]. These particles are separated
by a distance close to the effective hard sphere diameter seff

defined in Section 2.2. As a result, the local area fraction in
the densely packed region should be close to the close-

packing fraction, fcp ¼ p
�

2
ffiffiffi
3
p� �

� 0:91. Upon a slight increase

in dipolar coupling, the coexistence branches for the dilute
region, fgas, are shifted toward higher densities, while the
branches for the dense region, fden, move toward lower area
fractions. As a result, the area surrounded by the curves of fden

and fgas in Fig. 13 significantly shrinks with increasing l,
indicating that motility-induced phase separation is generally
suppressed by the dipolar interactions. Within the present simu-
lations, the phase separation and the corresponding coexistence

Fig. 11 Fraction of the largest cluster fc as a function of the motility v0*
for the coupling strength l = 0 (black circles), 0.5 (red squares), 1 (green
diamonds), 2 (blue triangles up), and 5 (orange triangles down). The dashed
line fc = 0.5 marks the value corresponding to cluster formation.

Fig. 12 Probability distribution function of local area fractions, P(f), for
the coupling strength l = 0 (black circles), 0.5 (red squares), 0.75 (green
diamonds), 1 (blue triangles up), and 2 (orange triangles down) with the
motility v0* = 100.

Fig. 13 Coexisting densities in the (v0*,f) plane for the coupling strength
l = 0 (black circles), 0.5 (red squares), 0.75 (green diamonds), and 1 (blue
triangle up). The black dashed line displays the effective close-packing
fraction, fcp ¼ p

�
2
ffiffiffi
3
p� �

� 0:91.
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curves disappear once l 4 1. We note that this observation is in
contrast with the findings in a recent study of active Brownian
particles with additional interactions of velocity alignment at
high densities.10 This shows that different types of orientational
interactions may have entirely different impacts on motility-
induced phase separation.

Yet another perspective on the disappearance of the phase
separation due to dipolar interactions emerges when we con-
sider the self-trapping mechanism (which plays a key role for
clustering at l = 0). To this end, we compute the normalized
speed of the ith particle, vi*/v0*, versus the local density
fi = f(ri), where the speed is given by vi* = |(Dri/s)/(Dts/t)| with
Dts = 10�2t. After averaging over N particles and over at least
1000 snapshots, we plot in Fig. 14 the normalized particle
speed versus the local density. For non-coupled (l = 0) and
weakly coupled (0 o l t 1) systems, we observe a linear decay,

v*(f)/v0* = 1 � adf, (13)

consistent with the prediction from a phenomenological
approach:63,64 Particles move slower when traveling through a
crowded area. The fitting parameter, ad, represents the decay
amplitude, and, therefore, describes the significance of the self-
trapping mechanism. Upon increasing l in the range lt 1, the
decay becomes less pronounced. Consequently, the fitting
parameter, ad, monotonically decreases, as seen in the inset
of Fig. 14. In contrast, for l \ 2, the normalized speed as a
function of f is essentially constant, that is, ad tends to zero. In
other words, there is no self-trapping anymore. This may be
attributed to the fact that the strongly-coupled dipolar particles
tend to form polar clusters with local head-to-tail alignment,
causing the particles to move along the same direction [see
Fig. 10(d)]. As a result, the motility-induced phase separation is
replaced by a macro-flocking state, as shown in Fig. 9. We will
come back to the flocking behavior in Section 3.3.2.

To obtain a more complete (yet qualitative) picture on the role
of the function ad(l) for the appearance of the motility-induced

phase separation, we consider the effective free energy
proposed in ref. 41,

f (f) = f0(f) + frep(f), (14)

where the bulk contribution is given by

f0 fð Þ ¼ f lnf� 1ð Þ þ
ðf
0

ln v rð Þ½ �dr (15)

with density-dependent swim speed v(r) = 1 � adr.63,64 Further,
the contribution from the excluded volume interactions
between particles is written as

frep(f) = krepY(f � ft)(f � ft)
4 (16)

with Y(x) being the Heaviside step function, krep the repulsive
strength, and ft the threshold area fraction.

For conventional active Brownian particles (l = 0), the decay
amplitude, as a crucial parameter describing the degree of self-
trapping, is typically chosen to be ad = 1 for 2D and ad = 1.3 for
3D.64 With this in mind, in Fig. 15 we plot the effective free
energy f (f) for the decay amplitude ad = 1.08, 0.95, and 0.8. At
low densities, f (f) is nearly independent of ad, while at high
densities, f (f) increases with decreasing ad. From f (f),
we determine the coexisting densities through the common
tangent construction. To compare the influence of the decay
amplitude, ad, on the phase separation from the theoretical
perspective and the simulation results, we plot in the inset
of Fig. 15 the coexisting densities in the (ad,f) plane for the
effective free energy (blue circles) and simulations at v0* = 100
and 0 r lr 1 (orange squares). More specifically, for the above
simulations we plot the coexisting densities determined from
Fig. 12 versus the associated ad plotted in the inset of Fig. 14.
The coexisting densities obtained from both methods describe
the same trend, that is, a decrease in the decay amplitude

Fig. 14 Normalized particle speed v*(f)/v0* as a function of the local area
fraction f for the coupling strength l = 0 (black circles), 0.5 (red squares),
1 (green diamonds), 2 (blue triangles up), and 5 (orange triangles down) with
the motility v0* = 100. The solid lines represent fits to eqn (13). Inset: Fitted
decay amplitude ad as a function of l. The line is drawn as a guide to the eye.

Fig. 15 Effective free energy f (f) with krep = 5000 and ft = 0.84 for
various ad = 1.08 (solid black line), 0.95 (solid red line), and 0.8 (solid green
line). The dashed lines display the common tangent construction. Terms
linear in f are irrelevant for the common tangent construction and have
been subtracted for clarity. Inset: Dependence of coexisting densities on
ad obtained from the effective free energy (blue circles) and simulations at
v0* = 100 and 0 r l r 1 (orange squares).
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ad causes a reduction in fden and a growth in fgas. Further,
the phase separation disappears once v(f) decays sufficiently
slow (ad t 0.6 for the effective free energy, and ad t 0.5
for simulations). This clearly indicates that the motility-
induced phase separation is suppressed when the function
v(f) decreases too slowly, i.e., when the dipolar coupling
becomes too strong.

3.3.2 Flocking. We now come back to the emergence of
flocking and polar ordering (see green triangles and orange
diamonds in Fig. 9). As argued in Section 3.2, once the density
is sufficiently high (F \ 0.23), the interplay of dipolar interac-
tions and activity allows for the formation of polar clusters. To
quantify this behavior at high densities, Fig. 16 shows the
magnitude of the average orientation, fe, as a function of l
for various values of v0*. In the passive case (v0* = 0), the order
parameter remains small for all l considered. Thus, there is no
clear hint regarding whether global order appears, which is
consistent with earlier simulations of monolayers of dipolar
particles.48,49,65 From the simulations, it is known that dense
two-dimensional passive systems of dipolar particles tend to
develop domain-like structures, which are highly frustrated and
characterized by the polar order only locally. Coming back to
the active case, we see from Fig. 16 that already at an inter-
mediate value of the motility (v0* = 20), the order parameter
reaches significant values (fe \ 0.5) when l exceeds a value of
about two. Combining this finding with the cluster analysis
shown in Fig. 11 and using the criteria in Table 1, we classify this
behavior as a micro-flocking state (3 t l t 6, 10 t v0* t 40),
see green triangles in Fig. 9. Finally, in the regime of high
motilities (v0* = 60–100), the data curve fe(l) is reminiscent of
a (polar) phase transition: fe rises suddenly from zero to values
greater than 0.5 at a ‘‘critical’’ coupling strength lc E 0.75.
This critical value slightly decreases upon an increase in v0*. In
addition to the large values of fe, the fraction of the largest
cluster, fc, is greater than 0.5 for v0* \ 60, as shown in Fig. 11.

Thus the systems at v0* \ 60 and l \ 1.25 are in a macro-
flocking state. We note that the existence of the polar order is
also reflected by the positive time correlations of individual
dipole moments at a time interval much longer than the
Brownian diffusion time t (not shown here).

3.3.3 Chain-like structures. Having discussed the emer-
gence and interplay of phase separation and global polar order,
we finally consider the fate of the chain-like structures char-
acterizing passive, dense dipolar system upon increasing v0*
from zero. The question is how the system transforms from a
state with chain-like structures into a macro-flocking state [see
Fig. 9, 10(c), and (d)]. As discussed in Section 2.3.3, the order
parameter fp (degree of polymerization) is no longer adequate to
quantify such a transition at high densities. Therefore, an alter-
native method is proposed: Fig. 17(a–d) shows the spatial correla-
tion function of dipole moments, gl(r>,r8) [defined in eqn (10)],

Fig. 16 Magnitude of the average orientation fe as a function of the
coupling strength l at F = 0.58 for v0* = 0 (black circles), 20 (red squares),
60 (green diamonds), 80 (blue triangles up), and 100 (orange triangles
down). The dashed line fe = 0.5 indicates the value above which the
particles form a flocking state (according to Table 1). The solid lines are
drawn as a guide to the eye.

Fig. 17 Spatial correlation function of dipole moments, gl(r>, r8) defined
in eqn (10), at F = 0.58 and l = 5 for the motility v0* = 0 (a), 8 (b), 16 (c), and
100 (d). The black circle represents the reference particle with the red
arrow indicating the particle’s orientation as well as the dipole moment.

The area r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r?2 þ rk2

q
o s is drawn in white color to reflect that the

center-to-center distance between particles can not be smaller than its
diameter due to steric repulsion. (e) The angular correlation function of
dipole moments, g̃l(y) defined in eqn (11), as a function of y = atan2(�r>, r8)
with the coupling strength l = 5. The graph at the bottom-right corner
of (e) illustrates the definition of y.
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for v0* = 0–100 and l = 5. For the passive and nearly passive case
[see Fig. 17(a and b)], the orange (curved) strips clearly indicate
positive correlations in front of and behind the reference
particle, while the purple regions suggest that the dipole
moments in the equatorial zone are rather uncorrelated. This
observation reflects chain formation along the direction of the
reference dipole moment. As the motility v0* increases [see
Fig. 17(c and d)], the purple regions disappear. Instead, the
whole figure turns orange, indicating positive correlations in all
directions. This shows a rather uniform alignment of dipole
moments regardless of the relative positions between particles.
In other words, the chains disappear.

To better evaluate the dependence of orientational correlations
on the direction of the connecting vector rij, Fig. 17(e) shows the
angular correlation function, g̃l(y) [defined in eqn (11)], for
the strong dipolar coupling strength l = 5. As mentioned in
Section 2.3.3, the difference between the maximum g̃l(ymax) and
the minimum g̃l(ymin) of the curve, Z [defined in eqn (12)], can be
used as a measure of chain formation. Upon increasing v0*,
Z decreases and, at the same time, the curves in Fig. 17(e) are
shifted toward lager positive correlations. An overview of the
behavior of Z as a function of v0* (for various l) is given in
Fig. 18. The data curves bear close resemblance to those for fp in
Fig. 3. For a non-dipolar system (l = 0), where chains are absent, the
order parameter Z does not show any significant behavior within the
range of motilities explored. In contrast, at large coupling strengths
(l = 4 and l = 5), the decrease in Z with increasing v0* reflects the
disappearance of a state with chain-like structures. Specifically, the
curves for l Z 4 show a sharp decrease, accompanied by a point of
inflection Z E 0.17. We choose this as a threshold value. We note
that the simulations of nearly passive, strongly-coupled systems (e.g.,
l = 5 and 6) are severely plagued by large fluctuations of the order
parameter Z over time. In these cases, we were unable to determine
whether or not the simulations had reached a steady state even after
a very long simulation time (t 4 300t). The corresponding region in
the state diagram in Fig. 9 is marked by dashed lines.

4 Conclusions

Using Brownian dynamics simulations, we have studied how
dipolar interactions and self-propulsion combine to influence
the dynamical self-assembly of a monolayer of dipolar active
Brownian particles. To this end, we have presented state dia-
grams in the plane spanned by the dipolar coupling and the
motility for three representative densities.

When the motility is small, the state diagrams are similar for all
densities considered. Specifically, homogeneous and isotropic fluids
are observed for nearly passive particles with weak dipolar coupling,
whereas strong dipolar coupling leads to chain-like structures. At
high motilities, the state diagrams strongly depend on the mean
area fraction F. At low densities (F = 0.12) and strong dipolar
coupling, an increase in the motility v0* from zero causes chain-like
structures to break into fragments of short chains and individual
beads. At intermediate densities, passive, strongly-coupled dipolar
particles self-assemble into a state with chain-like structures. With
increasing v0* from zero, chains start to break and the system
displays a micro-flocking state, where particles form finite-sized
clusters with polar order. Finally, at a high densities and strong
dipolar interactions, we observe a motility-induced transition from a
state with chain-like structures into a micro-flocking state and finally
into a macro-flocking state, where particles show global orientational
ordering and form ‘‘giant’’ clusters.

To provide a simple argument for the emergence of polar
order (which is absent in the passive 2D case), we have
considered the time evolution of two dipolar particles starting
from four representative initial configurations. As a result of
the interplay between dipolar coupling and self-propulsion, the
head-to-tail configuration remains the most stable one (same as
the passive case), while the antiparallel side-by-side configu-
ration is destabilized. With increasing particle number, the
head-to-tail alignment mechanism can finally lead to a flocking
state if the density is sufficiently high (F \ 0.23).

It has been reported earlier that finite size effects may hide
crucial features of the flocking behavior in active systems, such as
the first order nature of the flocking transition followed by the
formation of traveling bands.6 We note that the sizes of the present
simulations are limited to the order of 103 particles, due to the long-
range character of the dipolar interactions and, subsequently, the
expensive computational cost. Besides the qualitative behavior, it
would be very interesting to study the scaling behavior and explore
whether the dipolar active particles belong to any of the existing
universality classes, such as the one of the Vicsek model.4,66,67 To
this end, however, it would be necessary to perform extensive
simulations with system sizes much larger than N E 103, which
is, again, limited by the computational resources. Nevertheless, it is
worth mentioning a fundamental difference regarding the flocking
transition: in the Vicsek model the onset of the flocking state is
characterized by simultaneous spontaneous appearance of density
and orientational inhomogeneities.6–8 In contrast, in our model the
emergence of global orientational order is decoupled from the
formation of large-scale structures, such as ‘‘giant’’ clusters.

At F = 0.58 and large values of v0*, the system displays motility-
induced phase separation, where ‘‘giant’’ clusters composed of

Fig. 18 Order parameter Z as a function of the motility v0* at F = 0.58 for
the coupling strength l = 0 (black circles), 4 (red squares), 5 (green
diamonds), and 6 (blue triangles). The dashed line indicates the threshold
value for the state transition Zthres = 0.17. The solid lines are drawn as a
guide to the eye.
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densely-packed particles with random orientations coexist with
freely moving particles in the dilute region. The phase separation
persists as long as the dipolar coupling l is negligible against
thermal fluctuations (0 o l t 1). Once the dipolar interactions
dominate (l 4 1), the orientations of the active particles are no
longer uncorrelated and the particles tend to align with their
neighbors, leading to a break down of the self-trapping mecha-
nism and a subsequent suppression of the phase separation.

We note that our model does not account for hydrodynamic
interactions between the particles. In the absence of dipolar
coupling, simulation studies have reported that hydrodynamic
interactions tend to suppress motility-induced phase separation
due to, either, the near-field interactions,68,69 or the rapid decorr-
elation of the particle orientations.70–72 Through investigating the
pair distribution function, it has been shown that hydrodynamic
interactions generally damp out the translational structure of
active particles at high densities.73 Moreover, hydrodynamically
interacting particles with a certain range of force dipole strengths
can spontaneously form a state with global polar order,68,69,74,75

which can be attributed to either the actively induced rotation-
translation coupling,76 or the near-field lubrication forces.68,69

Therefore, one may expect that dipolar coupling and hydrody-
namic interactions combine to further suppress the phase separa-
tion and promote the polar ordering. The details of the resulting
collective behavior are a topic of future studies.

In the real world, active particles are often asymmetric.77,78 As
a result, the effective propulsion force does not coincide with the
particle’s center of mass, thus generating a propulsion torque
which induces chiral active motion.35,79 Such a mechanism is also
expected for the magnetic or dielectric Janus particles, whose
dipole moments (either permanent or induced) are mostly shifted
from the center of the individual particles.80–83 Therefore, it would
be very interesting to investigate models accounting for the chiral
motion and the shifted dipole moment, so as to obtain more
comprehensive understanding of dipolar active systems.
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A Appendix
A.1 Ewald summation

To deal with the long-range character of the dipole–dipole
interactions, we employ 2D Ewald summation with the ‘‘tinfoil’’
boundary condition.84 Within this method, the total dipole–
dipole energy is separated into different contributions,

Udd ¼
1

2

XN
iaj

�
li � lj

�
B rij ; a
� �

� li � rij
� ��

lj � rij
�
C rij ; a
� �h i

þ 1

L2

X
ka0

p
k
erfc

k

2a

� �
M kð Þj j2

� 2a3

3
ffiffiffi
p
p Nm2:

(17)

The first term on the right-hand side of eqn (17) corresponds to
the real-space contribution, where the functions B(r,a) and
C(r,a) are defined by32

B r; að Þ � 1

r3
2arffiffiffi
p
p exp �a2r2

� �
þ erfc arð Þ

 �
; (18)

and

C r; að Þ � 1

r5
2arffiffiffi
p
p 3þ 2a2r2
� �

exp �a2r2
� �

þ 3 erfc arð Þ
 �

(19)

with erfc(x) being the complementary error function. In
eqn (17), the real-space contribution is formulated under the
assumption that the convergence parameter a is large enough,
such that we can consider only the interactions within the
central simulation box. This is achieved by choosing a = 7/L
(with L being the box size) and evaluating rij with the minimum-
image convention.32 The second term in eqn (17) represents the
reciprocal-space contribution with

M kð Þ ¼
XN
j¼1

�
k � lj

�
exp �ik � rj
� �

� RefMg þ iImfMg:

(20)

The wave vectors in the reciprocal (square) lattice are given by
k = (2p/L)m, where m = (mx,my)T with mx and my being
integers. The magnitude of the wave vector is denoted as

k ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx

2 þmy
2

p �
L. We evaluate the reciprocal-space summa-

tion for the k-vectors within the range m2 = mx
2 + my

2 r 152.85

The third term represents the correction due to unphysical self-
interaction of dipole moments.85

The Langevin eqn (4) and (5) involve the forces and torques
due to the dipolar interactions. From eqn (17), the force acting
on the ith particle due to dipole–dipole interactions is given by

Fi,dd = �rri
Udd = FR

i,dd + Fka0
i,dd , (21)

where the real-space contribution is

FR
i;dd ¼

X
iaj

�
li � lj

�
rij þ li

�
lj � rij

�
þ lj li � rij

� �� �
C rij ; a
� �h

� li � rij
� �

li � rij
� �

rijD rij ; a
� �i

:

(22)

The function C(r,a) is defined in eqn (19), and D(r,a) is given by

D r; að Þ � 1

r7
2arffiffiffi
p
p 15þ 10a2r2 þ 4a4r4
� �

exp �a2r2
� �

þ15erfcðarÞ
�
:

(23)

Further, the contribution from the Fourier-form is written as

Fka0
i;dd ¼

2p
L2

X
ka0

k k � lið Þ
k

erfc
k

2a

� �

sinðk � riÞRefMðkÞg þ cos k � rið ÞImfMðkÞgð Þ;
(24)
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where Re M kð Þf g ¼
PN
j¼1

�
k � lj

�
cos k � rj
� �

and Im M kð Þf g ¼

�
PN
j¼1

�
k � ljÞsin k � rj

��
[see eqn (20)].

In the present work, every dipole moment is restricted to
point in the xy-plane with ci characterizing its direction relative
to the x-axis. Therefore, the torque acting on the ith particle is
always directed along the z-axis. It is given by

Ti,dd = �qci
Udd ẑ = TR

i + Tka0
i , (25)

where Udd is given in eqn (17), and ẑ denotes the unit vector
along the positive z-axis. The real-space component of the
torque is given by.

TR
i ¼ �

X
jai

�
li � lj

�
B rij ; a
� �

� li � rij
� ��

lj � rij
�
C rij ; a
� �h i

(26)

Finally, the reciprocal-space contribution is given by

Tka0
i ¼ 2p

L2

X
ka0

k� li

k
erfc

k

2a

� �

cos k � rið ÞRefMðkÞg � sinðk � riÞImfMðkÞgð Þ:
(27)

A.2 The cluster size distribution

The purpose of this paragraph is to show that the clusters observed
in the ‘‘micro-flocking’’ state at intermediate densities are indeed
microscopic structures. To this end, we performed a finite size
analysis of the cluster size distribution. If these clusters are
microscopic patterns, they should not grow as the total number
of particles N (i.e., the system size) becomes larger. Fig. 19 shows
the weighted cluster size distribution nP(n) at F = 0.23, v0* = 100
and l = 6 for various system sizes N, where the cluster size

n represents the number of particles within a cluster. For N o
1000, the distribution decays faster as N decreases, indicating that
the systems are influenced by the finite sizes. However, as we
increase the particle number up to N \ 1000, the data points
collapse onto a single curve. To obtain a more quantitative descrip-
tion, we fit the data points for each system size via the function,

nP(n) = P(1)n�1e�(n�1)/n0, (28)

where n0 denotes the characteristic cluster size. Similar fitting
functions of the cluster size distribution have also been con-
sidered in systems of conventional active Brownian particles86

and polar active disks.9 The inset of Fig. 19 shows that n0

reaches a plateau once N \ 1000. This suggests that the cluster
size indeed remains constant as the system size N increases. By
this, we can confirm that the clusters observed in the ‘‘micro-
flocking’’ state at F = 0.23 are microscopic structures.

To provide additional information on the clustering beha-
vior at high densities (F = 0.58), we plot in Fig. 20 the weighted
cluster size distribution for non-dipolar and strong coupled
dipolar active particles at F = 0.58. At the coupling strength l = 0, our
model reduces to the limiting case of active Brownian particles.3,63

Fig. 19 Weighted distribution of cluster size at F = 0.23 for the particle
number N = 100 (black circles), 225 (red squares), 400 (green diamonds),
1156 (blue triangles up), and 2500 (orange triangles down). The orange
solid line indicates the curve fitted to N = 2500 according to eqn (28).
Inset: Characteristic size of clusters, n0, as a function of particle number N.

Fig. 20 Weighted cluster size distribution at F = 0.58 for the motility
v0* = 0 (black circles), 20 (red squares), 60 (green diamonds), and 100
(blue triangles) with the coupling strength l = 0 (a) and l = 5 (b). We
denote n as the cluster size.
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Here, the correspondent weighted cluster size distribution
function undergoes a transition from an exponential decay
(v0* t 20) into a curve with a power law decay at small cluster
sizes n and a peak at large n (v0* t 20), as shown in Fig. 20(a).
Interestingly, the distribution functions of strongly-coupled
dipolar particles (l = 5) bear resemblance to the case of active
Brownian particles, as can be seen in Fig. 20(b). For passive
dipolar particles (v0* = 0), the weighted distribution function
vanishes at n E 30, which is three times as large as in the non-
dipolar case. This is due to the fact that the strongly-coupled
particles tend to form head-to-tail configurations and therefore
display chain-like structures. With increasing motilities, such
structures disappear. Further, the dipolar particles start to align
with their neighbors and form into clusters, as shown in
Fig. 10(d). As indicated by the peaks at n E 103 in Fig. 20(b),
these particles form ‘‘giant’’ clusters when v0* \ 20.
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31 J. J. Cerdà, S. Kantorovich and C. Holm, J. Phys.: Condens.

Matter, 2008, 20, 204125.
32 S. H. L. Klapp and M. Schoen, J. Chem. Phys., 2002,

117, 8050.
33 W.-Z. Ouyang, S.-H. Xu and Z.-W. Sun, J. Chem. Phys., 2011,

134, 014901.
34 R. Geiger and S. H. L. Klapp, J. Mod. Phys., 2013, 04, 401.
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R. Eichhorn, G. Volpe, H. Löwen and C. Bechinger, Phys.
Rev. Lett., 2013, 110, 198302.

80 L. Baraban, D. Makarov, M. Albrecht, N. Rivier, P. Leiderer
and A. Erbe, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,
2008, 77, 031407.

81 G. Steinbach, S. Gemming and A. Erbe, Eur. Phys. J. E, 2016,
39, 69.

82 A. B. Yener and S. H. L. Klapp, Soft Matter, 2016, 12, 2066.
83 S. H. Klapp, Curr. Opin. Colloid Interface Sci., 2016, 21, 76.
84 M. Mazars, Phys. Rep., 2011, 500, 43.
85 M. Schoen and S. H. L. Klapp, Reviews in Computational

Chemistry, John Wiley & Sons, Inc., 2007, pp. 301–340.
86 Y. Fily, S. Henkes and M. Cristina Marchetti, Soft Matter,

2014, 10, 2132.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Fe

br
ua

ry
 2

02
0.

 D
ow

nl
oa

de
d 

on
 4

/2
1/

20
20

 8
:3

2:
49

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sm01539f



