296 research outputs found

    Long-term prognosis of diabetic patients with acute myocardial infarction in the era of acute revascularization

    Get PDF
    Abstract Background The long-term prognosis of diabetic patients with acute myocardial infarction (AMI) treated by acute revascularization is uncertain, and the optimal pharmacotherapy for such cases has not been fully evaluated. Methods To elucidate the long-term prognosis and prognostic factors in diabetic patients with AMI, a prospective, cohort study involving 3021 consecutive AMI patients was conducted. All patients discharged alive from hospital were followed to monitor their prognosis every year. The primary endpoint of the study was all-cause mortality, and the secondary endpoint was the occurrence of major cardiovascular events. To elucidate the effect of various factors on the long-term prognosis of AMI patients with diabetes, the patients were divided into two groups matched by propensity scores and analyzed retrospectively. Results Diabetes was diagnosed in 1102 patients (36.5%). During the index hospitalization, coronary angioplasty and coronary thrombolysis were performed in 58.1% and 16.3% of patients, respectively. In-hospital mortality of diabetic patients with AMI was comparable to that of non-diabetic AMI patients (9.2% and 9.3%, respectively). In total, 2736 patients (90.6%) were discharged alive and followed for a median of 4.2 years (follow-up rate, 96.0%). The long-term survival rate was worse in the diabetic group than in the non-diabetic group, but not significantly different (hazard ratio, 1.20 [0.97-1.49], p = 0.09). On the other hand, AMI patients with diabetes showed a significantly higher incidence of cardiovascular events than the non-diabetic group (1.40 [1.20-1.64], p Conclusions Although diabetic patients with AMI have more frequent adverse events than non-diabetic patients with AMI, the present results suggest that acute revascularization and standard therapy with aspirin and RAS inhibitors may improve their prognosis.</p

    Test of OPE and OGE through mixing angles of negative parity N* resonances in electromagnetic transitions

    Full text link
    In this report, by using the mixing angles of one-gluon-exchange model(OGE) and one-pion-exchange model(OPE), and by using the electromagnetic Hamiltonian of Close and Li, we calculate the amplitudes of L=1 N* resonances for photoproduction and electroproduction. The results are compared to experimental data. It's found that the data support OGE, not OPE.Comment: 5 pages, Latex, 1 figure, accepted by Phys.Rev.

    Magnetic Resonance in the Chiral Helimagnet CrNb3S6

    Get PDF
    Recently, magnetic substances with chirality, namely the handedness of the magnetic structure, have attracted considerable attention because of the anomalous phenomena which appear in magnetic fields. CrNb3S6 is one of the chiral magnets formed by exchange and Dzyaloshinsky-Moriya (DM) interactions. Electron spin resonance (ESR) measurements of CrNb3S6 in magnetic fields parallel to the c-axis (helical axis) have been performed to evaluate the exchange and the DM constants that determine the helical structure. Fitting the ESR data to a calculated mode based on a spin wave theory yields values for the ferromagnetic inter-plane exchange constant J/kB = 16.2 K, the DM constant D/kB = 1.29 K, and the single-ion anisotropy constant K /kB = 1.02 K. From the Curie-Weiss temperature θCW ~ 145 K, large intra-plane ferromagnetic exchange interactions are suggested.20th International Conference on Magnetism(ICM 2015), 5th to 10th July, 2015, Barcelona, Spai

    Leptonic Decays of the W-Boson in a Strong Electromagnetic Field

    Full text link
    The probability of W-boson decay into a lepton and a neutrino in a strong electromagnetic field is calculated. On the basis of the method for deriving exact solutions to relativistic wave equations for charged particles, an exact analytic expression is obtained for the partial W-decay width at an arbitrary value of the external field strength. It is found that, in the region of comparatively weak fields, field-induced corrections to the standard decay width of the W-boson in a vacuum are about a few percent. In these conditions at first we observe the decrease of the W-boson partial decay width with the increase of the external field strength parameter. At absolute minimum the W-width deviates from the corresponding vacuum value by a factor 0,926. Then with further augmentation of the background field intensity the W-boson decay width grows monotonously. In superstrong fields the partial W-width is greater than the corresponding one in vacuum in a dozen of times.Comment: LaTex file, 19 pages, 2 Postscript figur

    O(αs){\cal O}(\alpha_{s}) QCD and O(αew){\cal O}(\alpha_{ew}) electroweak corrections to ttˉh0t\bar{t}h^0 production in γγ\gamma \gamma collision

    Full text link
    We calculate the O(αs){\cal O}(\alpha_{s}) QCD and O(αew){\cal O}(\alpha_{{\rm ew}}) electroweak one-loop corrections in the Standard Model framework, to the production of an intermediate Higgs boson associated with ttˉt\bar{t} pair via γγ\gamma \gamma fusion at an electron-positron linear collider (LC). We find the O(αs){\cal O}(\alpha_{s}) QCD corrections can be larger than the O(αew){\cal O}(\alpha_{{\rm ew}}) electroweak ones, with the variations of the Higgs boson mass mhm_{h} and e+ee^+e^- colliding energy s\sqrt{s}. Both corrections may significantly decrease or increase the Born cross section. The numerical results show that the relative corrections from QCD to the process \eep may reach 34.8%, when s=800\sqrt{s}=800 GeV and mh=200m_h=200 GeV, while those from electroweak can be -13.1%, -15.8% and -12.0%, at s=800\sqrt{s} = 800 GeV, 1 TeV and 2 TeV respectively.Comment: 38 pages, 16 figure

    Single top quark production via SUSY-QCD FCNC couplings at the CERN LHC in the unconstrained MSSM

    Full text link
    We evaluate the tcˉt\bar{c} and tuˉt\bar{u} productions at the LHC within the general unconstrained MSSM framework. We find that these single top quark productions induced by SUSY-QCD FCNC couplings have remarkable cross sections for favorable parameter values allowed by current low energy data, which can be as large as a few pb. Once large rates of the tcˉt\bar{c} and tuˉt\bar{u} productions are detected at the LHC, they may be induced by SUSY FCNC couplings. We show that the precise measurement of single top quark production cross sections at the LHC is a powerful probe for the details of the SUSY FCNC couplings.Comment: 39 pages, 10 figures. Published version. Constraints on the mixing parameters updated, references added, minor changes in presentations, results and conclusions unchange
    corecore