5 research outputs found

    River fragmentation and flow alteration metrics : a review of methods and directions for future research

    Get PDF
    Rivers continue to be harnessed to meet humanity’s growing demands for electricity, water, and flood control. While the socioecological impacts of river infrastructure projects (RIPs) have been well-documented, methodological approaches to quantify river fragmentation and flow alteration vary widely in spatiotemporal scope, required data, and interpretation. In this review, we first present a framework to visualise the effects of different kinds of RIPs on river fragmentation and flow alteration. We then review available methods to quantify connectivity and flow alteration, along with their data requirements, scale of application, advantages, and disadvantages. Finally, we present decision-making trees to help stakeholders select among these methods based on their objectives, resource availability, and the characteristics of the project(s) being evaluated. Thematic searches of peer-reviewed literature using topic-relevant keywords were conducted on Google Scholar. The bibliography of selected papers was also reviewed, resulting in the selection of 79 publications. Papers that did not define or apply a specific metric were excluded. With respect to fragmentation, we selected papers focused on instream connectivity and excluded those dealing with overland hydrologic connections. For flow alteration, we selected papers that quantified the extent of alteration and excluded those aimed at prescribing environmental flows. The expected hydrological consequences of various RIP types were ‘mapped’ on a conceptual fragmentation-flow alteration plot. We compiled 29 metrics of river fragmentation and 13 metrics to flow alteration, and used these to develop decision-making trees to facilitate method selection. Despite recent advances in metric development, further work is needed to better understand the relationships between and among metrics, assess their ecological significance and spatiotemporal scale of application, and develop more informative methods that can be effectively applied in data-scarce regions. These objectives are especially critical given the growing use of such metrics in basin-wide conservation and development planning

    A new index to quantify longitudinal river fragmentation : conservation and management implications

    Get PDF
    The proliferation of river infrastructure projects has altered aquatic longitudinal connectivity, posing a growing threat to riverine biodiversity and ecosystem processes worldwide. Effective methods to quantify loss of river connectivity across spatiotemporal scales and in data-limited landscapes are important to understand and inform basin-wide conservation and development planning. Here we introduce a Catchment Area-based Fragmentation Index (CAFI) and its derivative, the Catchment Area- and Rainfall-based Fragmentation Index (CARFI) as new metrics to quantify river fragmentation. These indices use catchment area as a proxy for riverine habitat availability, avoiding the drawbacks of existing metrics that rely on river length and associated derivatives. CAFI/CARFI can be computed across spatiotemporal scales, incorporate barrier passability values, assesses the cumulative impact of multiple barriers, and be applied even in data-limited environments. We first applied CAFI and CARFI to a simulated network to illustrate their properties with respect to the number and location of barriers and compared these results to the widely applied Dendritic Connectivity Index (DCI). While all indices varied with barrier addition, CAFI and CARFI were more sensitive to both barrier number and location. Next, we illustrated the utility of CAFI and CARFI through case studies in two contrasting settings: the Klamath River in California, where dam building has ceased (and dam removals are being considered) and the Netravathi River in India, where dam building is ongoing, with 65 dams proposed for future development. Results indicate that CAFI and CARFI can effectively quantify trends in fragmentation across spatial scales and temporal scenarios of dam development (i.e. descriptive applications) and can aid the prioritization of sites for dam removal, restoration, or conservation (i.e. prescriptive applications). Overall, these indices can quantify the impacts of individual dams and assess a range of development scenarios to inform basin-wide conservation and development planning

    Dataset of temporal trends of surface water area across India's rivers and basins

    No full text
    This dataset [1] quantifies the extent and rate of annual change in surface water area (SWA) across India's rivers and basins over a period of 30 years spanning 1991 to 2020. This data has been derived from the Global Surface Water Explorer, which maps historical terrestrial surface water occurrence globally using the Landsat satellite image archive since 1984, at a spatial resolution of 30 m/pixel and a temporal resolution of once a month. This monthly time-series was used to create annual composites of wet-season (October, November, December), dry-season (February, March, April), and permanent (October, November, December, February, March, April) surface water extent, which were then used to estimate annual rates of change. To estimate SWA trends for both river networks and their basins, we conducted our analysis at two spatial scales – (1) cross-sectional reaches (transects) across river networks, and (2) sub-basins within river catchments. For each reach and sub-basin (henceforth basin), temporal trends in wet-season, dry-season, and permanent SWA were estimated using the non-parametric Sen's slope estimator. For every valid reach and basin, the temporal timeseries of invalid or missing data was also computed as a fractional area to inform the level of certainty associated with reported SWA trends estimates.In addition to a Zenodo data repository, this data [1] is presented as an interactive web application (https://sites.google.com/view/surface-water-trends-india/; henceforth Website) to allow users to visualize the trends of permanent, wet-season, and dry-season water along with the extent of missing data for individual transects or basins across India. The Website provides a simple user interface to enable users to download seasonal time-series of SWA for any region of interest at the scale of the river network or basin. The Website also provides details about accessing the annual permanent, dry and wet season composites, which are stored as publicly accessible cloud assets on the Google Earth Engine platform. The spatial (basin and reach) and temporal (wet season, dry season, and permanent water scenarios) scales of information provided in this dataset yield a granular understanding of water systems in India. We envision this dataset to serve as a baseline information layer that can be used in combination with other data sources to support regional analysis of hydrologic trends, watershed-based analysis, and conservation planning. Specific applications include, but are not limited to, monitoring and identifying at-risk wetlands, visualizing and measuring changes to surface water extent before and after water infrastructure projects (such as dams and water abstraction projects), mapping drought prone regions, and mapping natural and anthropogenic changes to SWA along river networks. Intended users include, but are not limited to, students, academics, decision-makers, planners, policymakers, activists, and others interested in water-related issues
    corecore