6 research outputs found

    Improving Fatigue Resistance of Dihydropyrene by Encapsulation within a Coordination Cage

    Get PDF
    Photochromic molecules undergo reversible isomerization upon irradiation with light at different wavelengths, a process that can alter their physical and chemical properties. For instance, dihydropyrene (DHP) is a deep-colored compound that isomerizes to light-brown cyclophanediene (CPD) upon irradiation with visible light. CPD can then isomerize back to DHP upon irradiation with UV light or thermally in the dark. Conversion between DHP and CPD is thought to proceed via a biradical intermediate; bimolecular events involving this unstable intermediate thus result in rapid decomposition and poor cycling performance. Here, we show that the reversible isomerization of DHP can be stabilized upon confinement within a (PdIIL4)-L-6 coordination cage. By protecting this reactive intermediate using the cage, each isomerization reaction proceeds to higher yield, which significantly decreases the fatigue experienced by the system upon repeated photocycling. Although molecular confinement is known to help stabilize reactive species, this effect is not typically employed to protect reactive intermediates and thus improve reaction yields. We envisage that performing reactions under confinement will not only improve the cyclic performance of photochromic molecules, but may also increase the amount of product obtainable from traditionally low-yielding organic reactions

    Disequilibrating azoarenes by visible-light sensitization under confinement

    No full text
    The process of vision begins with the absorption of light by retinal, which triggers isomerization around a double bond and, consequently, a large conformational change in the surrounding protein opsin. However, certain organisms evolved different visual systems; for example, deep-sea fishes employ chlorophyll-like antennas capable of capturing red light and sensitizing the nearby retinal molecule via an energy-transfer process. Similar to retinal, most synthetic photochromic molecules, such as azobenzenes and spiropyrans, switch by double-bond isomerization. However, this reaction typically requires shortwavelength (ultraviolet) light, which severely limits the applicability of these molecules. Here, we introduce DisEquilibration by Sensitization under Confinement (DESC) – a supramolecular approach to switch various azoarenes from the E isomer to the metastable Z isomer using visible light of desired color, including red. DESC relies on a combination of a coordination cage and a photosensitizer (PS), which act together to bind and selectively sensitize E-azoarenes. After switching to the Z isomer, the azoarene loses its affinity to—and is expelled from—the cage, which can convert additional copies of E into Z. In this way, the cage⋅PS complex acts as a light-driven supramolecular machine, converting photon energy into chemical energy in the form of out-of-equilibrium photostationary states, including ones that cannot be accessed via direct photoexcitation
    corecore