9 research outputs found

    Infection and coinfection by human papillomavirus, Epstein–Barr virus and Merkel cell polyomavirus in patients with squamous cell carcinoma of the larynx: a retrospective study

    Get PDF
    Background Human papillomavirus (HPV) is recognized as an important risk factor for laryngeal carcinogenesis. Although HPV-16 and 18 have been strongly implicated, the presence of other high-risk HPV (HR-HPV) genotypes or the coinfection with Epstein-Barr virus (EBV) or Merkel cell polyomavirus (MCPV) may increase the risk, but their etiological association has not been definitively established. Methods We characterized the genotype-specific HPV and the frequency of EBV and MCPV infections through the detection of their DNA in 195 laryngeal specimens of squamous cell carcinoma (SCC) histologically confirmed. Results HPV DNA was detected in 93 (47.7%) specimens. HPV-11 was the most frequent with 68 cases (73.1%), and HPV-52 was the most frequently HR-HPV found with 51 cases, which corresponds to 54.8% of all HPV-positive specimens. EBV DNA was detected in 54 (27.7%) tumor tissue specimens of which 25 (46.3%) were in coinfection with HPV. MCPV DNA was detected only in 11 (5.6%) cases of which 5 (45.4%) were in coinfection with an HR-HPV. No association between the presence of DNA of the three examined viruses and the patient smoking habits, alcohol consumption, age, the keratinization status, differentiation grade, or localization of the tumor in the larynx were found. Discussion HPV-52 was the most prevalent HR-HPV, which may suggest that this and other genotypes in addition to HPV-16 and 18 could be considered for prophylaxis. However, further studies including non-cancer larynx cases and the evaluation of other molecular markers and viral co-infection mechanisms are needed to determine the role of the different HR-HPV genotypes, EBV, and MCPV in the etiology of SCC of the larynx

    Hydrodynamic Modeling of the Interaction of Winds within a Collapsing Turbulent Gas Cloud

    No full text
    By using the particle-based code Gadget2, we follow the evolution of a gas giant molecular cloud, in which a set of gas particles representing the wind are created by a Monte Carlo scheme and suddenly move outwards from the cloud’s center. The particles representing the gas cloud initially have a velocity according to a turbulent spectrum built in a Fourier space of 643 grid elements. The level of turbulence and the temperature of the cloud are both adjusted so that a gravitational collapse of the cloud is initially induced. All the winds are activated in a very early stage of evolution of the cloud. We consider only two kinds of winds, namely, one with spherical symmetry and the second one of a bipolar collimated jet. In order to assess the dynamical change in the cloud due to interactions with the winds, we show isovelocity and isodensity plots for all our simulations. We also report on the accretion centers detected at the last simulation time available for each model

    Education and public outreach at the Carl Sagan Solar Observatory of the University of Sonora

    Get PDF
    We discuss the importance of small solar observatories for EPO (Education and Public Outreach), mentioning why they are relevant and what kind of equipment and software require. We stress the fact that technological advances have made them affordable and that they should be widely available. This work is a result of our experience with one: The Carl Sagan Solar Observatory (CSSO). We briefly describe its status and the solar data obtained daily with students participation. We present examples of the data obtained in the visible, Ca II and two in Hα. Data which is widely used for education. Finally we talk about the capability for remote operation as an open invitation for collaboration in educational and scientific projects

    The Carl Sagan Observatory: A Telescope for Everyone

    No full text
    The Carl Sagan Observatory is a new project for a remote observatory that will be built at the summit of Cerro Azul (a 2480 m mountain located near Magdalena. Sonora, Mexico). It will include one 55 cm and four 14 cm telescopes. The 55 cm telescope will be dedicated to supernovae research. One of the 14 cm Maksutov telescopes will be used as an autoguider for the stellar observations. The other 14 cm telescopes will feature different narrow band filters that will be used for solar research. The observatory will be controlled from the campus of the U niversidad de Sonora in Hermosillo, Sonora, Mexico ( ~ 200 km from the site). A prototype of the observatory building has been built on campus and first light is expected by the end of May of 2001. We expect to have an operating mountain observatory by the end of 2002. Some of the unique technical aspects of this observatory, which we believe can be a model for future small telescope observatories are discussed in this work

    Multifrequency Study of the Blazar 3C 454.3

    No full text
    This work is devoted to multi-frequency studying of the blazar 3C 454.3. The study includes spectroscopic and photometric observations in the optical, IR, and gamma-ray bands. We investigate whether a correlation exists in the light curves at different wavelengths. We have carried out observations of the optical spectrum (from 4000 to 7000 Angstroms) between 2007 and 2009, and identified MgII [2800 Angstroms] and FeII emission line features. We have obtained optical magnitudes and color indices of the quasar and performed a correlation between the optical, IR, and gamma-ray light curves. We have found statistically significant correlations between the light curves at different wavelengths

    Supernovas, faros en el universo: medición de la distancia a ASASSN-15hx

    No full text
    Difícil pensar en un evento astronómico tan relevante y polifacético como la gigantesca explosión de supernova, que en breves segundos destruye su estrella, creando un gran número de elementos pesados. El inmenso brillo de las supernovas permite observarlas a enormes distancias, para así obtener información cosmológica. En este trabajo abordamos en general el tema de supernovas, enfocándonos luego al estudio de la supernova de tipo Ia ASASSN-15hx. Presentamos las observaciones realizadas en diferentes filtros y mostramos un método basado en el ancho de su curva de luz para estimar su distancia y corrimiento al rojo. Los valores obtenidos coinciden con información encontrada en la literatura y las incertidumbres obtenidas están dentro del rango de las encontradas con otros métodos
    corecore