3 research outputs found

    Banana Peel Powder Biosorbent for Removal of Hazardous Organic Pollutants from Wastewater

    No full text
    Disposing of pollutants in water sources poses risks to human health and the environment, but biosorption has emerged as an eco-friendly, cost-effective, and green alternative for wastewater treatment. This work shows the ability of banana peel powder (BPP) biosorbents for efficient sorption of methylene blue (MB), atrazine, and glyphosate pollutants. The biosorbent highlights several surface chemical functional groups and morphologies containing agglomerated microsized particles and microporous structures. BPP showed a 66% elimination of MB in 60 min, with an adsorption capacity (qe) of ~33 mg g−1, and a combination of film diffusion and chemisorption governed the sorption process. The biosorbent removed 91% and 97% of atrazine and glyphosate pesticides after 120 min, with qe of 3.26 and 3.02 mg g−1, respectively. The glyphosate and atrazine uptake best followed the Elovich and the pseudo-first-order kinetic, respectively, revealing different sorption mechanisms. Our results suggest that BPP is a low-cost biomaterial for green and environmentally friendly wastewater treatment

    Metal-Free g-C3N4/Nanodiamond Heterostructures for Enhanced Photocatalytic Pollutant Removal and Bacteria Photoinactivation

    No full text
    Heterogeneous photocatalysis has emerged as a promising alternative for both micropollutant removal and bacterial inactivation under solar irradiation. Among a variety of photocatalysts explored in the literature, graphite carbon nitride (g-C3N4) is a metal-free semiconductor with acceptable chemical stability, low toxicity, and excellent cost-effectiveness. To minimize its high charge recombination rate and increase the photocatalyst adsorption capacity whilst keeping the metal-free photocatalyst system idea, we proposed the heterojunction formation of g-C3N4 with diamond nanocrystals (DNCs), also known as nanodiamonds. Samples containing different amounts of DNCs were assessed as photocatalysts for pollutant removal from water and as light-activated antibacterial agents against Staphylococcus sureus. The sample containing 28.3 wt.% of DNCs presented the best photocatalytic efficiency against methylene blue, removing 71% of the initial dye concentration after 120 min, with a pseudo-first-order kinetic and a constant rate of 0.0104 min−1, which is nearly twice the value of pure g-C3N4 (0.0059 min−1). The best metal-free photocatalyst was able to promote an enhanced reduction in bacterial growth under illumination, demonstrating its capability of photocatalytic inactivation of Staphylococcus aureus. The enhanced photocatalytic activity was discussed and attributed to (i) the increased adsorption capacity promoted by the presence of DNCs; (ii) the reduced charge recombination rate due to a type-II heterojunction formation; (iii) the enhanced light absorption effectiveness; and (iv) the better charge transfer resistance. These results show that g-C3N4/DNC are low-cost and metal-free photoactive catalysts for wastewater treatment and inactivation of bacteria

    Linear and Nonlinear Optical Spectroscopy of Fluoroalkylated BODIPY Dyes

    No full text
    A series of fluoroalkyl-labeled BODIPY dyes have been synthesized with different substituents on the 2- and 6-positions and investigated in terms of their spectroscopic properties. The dyes were decorated with aryl, alkenyl, and alkynyl substituents, respectively. Those substituents are able to expend the dyes’ delocalized π-electron system to different extents. Detailed linear and nonlinear optical spectroscopy methods as well as quantum-chemical calculations have been employed to verify the influence of those different substituents on the electronic distribution and, ultimately, on the molecules’ optical properties. From the nonlinear optical measurements, we find that the substituents highly influence the excited-state absorption properties, which could be tuned in wavelength by ∼100 nm and in magnitude by over 1 order of magnitude, reaching peak values close to 10<sup>–15</sup> cm<sup>2</sup> for one of the alkynyl-containing dyes
    corecore