7 research outputs found

    Blood calcium dynamics in cows receiving an aqueous calcium suspension for voluntary consumption or a calcium bolus following parturition

    No full text
    The form of oral calcium (Ca) supplement and the Ca source influence Ca absorption dynamics resulting in different postpartum calcemia. The objective of this study was to investigate whether an oral Ca supplement (mainly CaCO3) offered for voluntary consumption would maintain or increase postpartum blood Ca to the same degree as a Ca bolus (mainly CaCl2) providing an equivalent dose of a Ca. A total of 72 Holstein cows were blocked by expected parturition date and parity. Within each block of 3 animals, cows were randomly assigned to one of three treatments, including an oral Ca supplement offered for voluntary consumption (Ca-drink, n = 23), an oral Ca bolus (Ca-bolus, n = 24), or an untreated group (CON, n = 25). Treatments were administered once within 15 min postpartum. The Ca-drink provided 45 g of Ca (CaCO3 source) and was mixed in 20 L of lukewarm water and offered to cows for 30 min. The Ca-bolus provided 43 g of Ca (71% from CaCl2 and 29% from CaSO4) and was administered once. Both Ca-bolus and CON cows received 20-l of lukewarm water at parturition to standardize the volume of fluids (Ca-drink or 20-l lukewarm water) offered at parturition. Dairy cows offered Ca-drink had a 28% higher fluid consumption than Ca-bolus and CON cows. Milk yield and milk composition expressed in percentage protein, fat, lactose, and urea did not differ, whilst there was a small but significant increase in DMI in cows receiving the Ca-drink compared to CON, while Ca-bolus did not differ from other groups. This was consistent with reduced BW losses between week 1 and 3 in cows receiving the Ca-drink suspension. Treatment by time interactions were present for blood Ca, glucose, and urea concentrations. Blood Ca was relatively stable in Ca-drink cows, while higher fluctuations were observed in Ca-bolus cows. In Ca-bolus cows, blood Ca increased from 15 min to 6 h, decreased from 6 to 24 h, and finally increased again from 24 to 48 h. At 24 h post administration, blood Ca was greater in cows receiving the Ca-drink than cows receiving the Ca-bolus. Blood glucose was greater in Ca-bolus cows at 15 min after treatment administration compared with Ca-bolus and CON, while blood urea was higher in CON than Ca-drink and Ca-bolus throughout the sampling period. These results indicate that voluntary oral Ca resulted in a relatively stable calcemia, whereas higher fluctuations were observed in cows receiving the Ca-bolus. Due to a lack of differences between Ca-drink and Ca-bolus compared with CON, it is not possible to conclude regarding the efficacy in maintaining postpartum blood Ca

    Fat composition of milk replacer influences postprandial and oxidative metabolisms in dairy calves fed twice daily

    No full text
    Milk replacers (MR) for calves contain alternative fat sources as substitute for milk fat. This substitution leads to differences in fat properties, such as the fatty acid profile and the triglyceride structure. This study evaluated how fat composition in MR affects gastrointestinal health, blood redox parameters, and postprandial metabolism in calves fed twice daily.</p

    Fat composition of milk replacer influences growth performance, feeding behavior, and plasma fatty acid profile in ad libitum-fed calves.

    No full text
    Fat composition in milk replacers (MR) for calves differs from bovine milk fat in multiple ways. The aim of the study was to investigate the impact of different approaches of formulating fat in MR on growth, ad libitum intakes of MR and solid feeds, as well as blood metabolites in dairy calves.</p

    Postprandial metabolism and gut permeability in calves fed milk replacer with different macronutrient profiles or a whole milk powder

    No full text
    Current formulations of milk replacers (MR) for calves differ greatly from bovine whole milk in terms of macronutrient profile. In this study, three MR formulations (high fat, HF; high lactose, HL; and high protein, HP) or a whole milk powder (WP) were fed three times daily and evaluated for gastric emptying, postprandial insulin glucose kinetics, and gut permeability during the first 4 weeks of life. Results showed that balancing macronutrients in MR led to postprandial dynamics and hormonal homeostasis closer to that of calves fed WP, unlike calves fed HL and HP. This raises the possibility of optimizing MR to better support metabolic health and positively impact calf development.</p
    corecore