9 research outputs found

    Detecting entanglement with non-hermitian operators

    Full text link
    We derive several entanglement conditions employing non-hermitian operators. We start with two conditions that were derived previously for field mode operators, and use them to derive conditions that can be used to show the existence of field-atom entanglement and entanglement between groups of atoms. The original conditions can be strengthened by making them invariant under certain sets of local unitary transformations, such as Gaussian operations. We then apply these conditions to several examples, such as the Dicke model. We conclude with a short discussion of how local uncertainty relations with non-hermitian operators can be used to derive entanglement conditions.Comment: Typos correcte

    A No-Go Theorem for Gaussian Quantum Error Correction

    Full text link
    It is proven that Gaussian operations are of no use for protecting Gaussian states against Gaussian errors in quantum communication protocols. Specifically, we introduce a new quantity characterizing any single-mode Gaussian channel, called entanglement degradation, and show that it cannot decrease via Gaussian encoding and decoding operations only. The strength of this no-go theorem is illustrated with some examples of Gaussian channels.Comment: 4 pages, 2 figures, REVTeX

    Quantum optical coherence can survive photon losses: a continuous-variable quantum erasure correcting code

    Get PDF
    A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code (QECC) that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information technologies, it is believed that QECC will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the first experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Whereas {\it errors} translate, in an information theoretic language, the noise affecting a transmission line, {\it erasures} correspond to the in-line probabilistic loss of photons. Our quantum code protects a four-mode entangled mesoscopic state of light against erasures, and its associated encoding and decoding operations only require linear optics and Gaussian resources. Since in-line attenuation is generally the strongest limitation to quantum communication, much more than noise, such an erasure-correcting code provides a new tool for establishing quantum optical coherence over longer distances. We investigate two approaches for circumventing in-line losses using this code, and demonstrate that both approaches exhibit transmission fidelities beyond what is possible by classical means.Comment: 5 pages, 4 figure

    Information quantique avec variables continues optiques: nonlocalité, intrication, et correction d'erreur

    No full text
    L'objectif de ce travail de recherche est l'étude des posibilités offertes par une nouvelle approche de l'information quantique basée sur des variables quantiques continues. Lorsque ces variables continues sont portées par le champs éléctromagnétique, un grand nombre de protocoles d'information quantique peuvent être implémentés à l'aide de lasers et d'éléments d'optique linéaire standards. Cette simplicité expérimentale rend cette approche très intéressantes d'un point de vue pratique, en particulier pour le développement des futurs réseaux de communications quantiques.Le travail peut se diviser en deux parties complémentaires. Dans la première partie, plus fondamentale, la relation complexe qui existe entre l'intrication et la nonlocalité de la mécanique quantique est étudiée sur base des variables optiques continues. Ces deux ressources étant essentielles pour l'information quantique, il est nécessaire de bien les comprendre et de bien les caractériser. Dans la seconde partie, orientée vers des applications concrètes, le problème de la correction d'erreur à variables continues est étudié. Pouvoir transmettre et manipuler l'information sans erreurs est nécessaire au bon développemnent de l'information quantique, mais, en pratique, les erreurs sont inévitables. Les codes correcteurs d'erreurs permettent de détecter et corriger ces erreures de manière efficace.Doctorat en Sciences de l'ingénieurinfo:eu-repo/semantics/nonPublishe

    Network distributed quantum random number generation

    No full text
    info:eu-repo/semantics/publishe

    Continuous variables nonlocality without entanglement

    No full text
    info:eu-repo/semantics/publishe

    Tests of multimode quantum nonlocality with homodyne measurements

    No full text
    We investigate the violation of local realism in Bell tests involving homodyne measurements performed on multimode continuous-variable states. By binning the measurement outcomes in an appropriate way, we prove that the Mermin-Klyshko inequality can be violated by an amount that grows exponentially with the number of modes. Furthermore, the maximum violation allowed by quantum mechanics can be attained for any number of modes, albeit requiring a quantum state that is rather unrealistic. Interestingly, this exponential increase of the violation holds true even for simpler states, such as multipartite GHZ states. The resulting benefit of using more modes is shown to be significant in practical multipartite Bell tests by analyzing the increase of the robustness to noise with the number of modes. In view of the high efficiency achievable with homodyne detection, our results thus open a possible way to feasible loophole-free Bell tests that are robust to experimental imperfections. We provide an explicit example of a three-mode state (a superposition of coherent states) which results in a significantly high violation of the Mermin-Klyshko inequality (around 10%) with homodyne measurements.Comment: 9 pages, 5 figure

    Continuous-Variable Quantum Erasure Correcting Code

    No full text
    We experimentally demonstrate a continuous variable quantum erasure-correcting code, which protects coherent states of light against complete erasure. The scheme encodes two coherent states into a bi-party entangled state, and the resulting 4-mode code is conveyed through 4 independent channels that randomly erases the signal. We show experimentally that the transmitted state can be corrected by performing a syndrome measurement followed by a corrective transformation. © 2010 Optical Society of America.SCOPUS: cp.pQuantum Electronics and Laser Science Conference, QELS 2010 & Conference on Lasers and Electro-Optics, CLEO 2010 ;San Jose, CA; United States; 16 May 2010 through 21 May 2010info:eu-repo/semantics/publishe
    corecore