106 research outputs found

    Noise characterization for LISA

    Full text link
    We consider the general problem of estimating the inflight LISA noise power spectra and cross-spectra, which are needed for detecting and estimating the gravitational wave signals present in the LISA data. For the LISA baseline design and in the long wavelength limit, we bound the error on all spectrum estimators that rely on the use of the fully symmetric Sagnac combination (ζ\zeta). This procedure avoids biases in the estimation that would otherwise be introduced by the presence of a strong galactic background in the LISA data. We specialize our discussion to the detection and study of the galactic white dwarf-white dwarf binary stochastic signal.Comment: 9 figure

    Toxic effect of herbicides used for water hyacinth control on two insects released for its biological control in South Africa

    Get PDF
    The integrated control of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae) has become necessary in South Africa, as biological control alone is perceived to be too slow in controlling the weed. In total, seven insect biological control agents have been released on water hyacinth in South Africa. At the same time, herbicides are applied by the water authorities in areas where the weed continues to be troublesome. This study investigated the assumption that the two control methods are compatible by testing the direct toxicity of a range of herbicide formulations and surfactants on two of the biological control agents released against water hyacinth, the weevil, Neochetina eichhorniae Warner (Coleoptera: Curculionidae) and the water hyacinth mirid,Eccritotarsus catarinensis (Carvalho) (Hemiptera: Miridae). A number of the formulations used resulted in significant mortality of the mirid and the weevil. Products containing 2,4-D amine and diquat as active ingredients caused higher mortality of both agents (up to 80% for the mirid) than formulations containing glyphosate. Furthermore, when surfactants were added to enhance herbicide efficiency, it resulted in increased toxicity to the insects. We recommend that glyphosate formulations should be used in integrated control programmes, and that surfactants be avoided in order to reduce the toxic nature of spray formulations to the insect biological control agents released against water hyacinth

    Raman analysis of bilayer graphene film prepared on commercial Cu(0.5 at% Ni) foil

    Get PDF
    This study reports the Raman analysis of bilayer graphene films prepared on commercial dilute Cu(0.5 at% Ni) foils using atmospheric pressure chemical vapor deposition. A bilayer graphene film obtained on Cu foil is known to have small areas of bilayer (islands) with a significant fraction of non-Bernal stacking, while that obtained on Cu/Ni is known to grow over a large area with Bernal stacking. In the Raman optical microscope images, a wafer-scale monolayer and large-area bilayer graphene films were distinguished and confirmed with Raman spectra intensities ratios of 2D to G peaks. The large-area part of bilayer graphene film obtained was assisted by Ni surface segregation because Ni has higher methane decomposition rate and carbon solubility compared with Cu. The Raman data suggest a Bernal stacking order in the prepared bilayer graphene film. A four-point probe sheet resistance of graphene films confirmed a bilayer graphene film sheet resistance distinguished from that of monolayer graphene. A relatively higher Ni surface concentration in Cu(0.5 at% Ni) foil was confirmed with time-of-flight secondary ion mass spectrometry. The inhomogeneous distribution of Ni in a foil and the diverse crystallographic surface of a foil (confirmed with proton-induced X-ray emission and electron backscatter diffraction, respectively) could be a reason for incomplete wafer-scale bilayer graphene film. The Ni surface segregation in dilute Cu(0.5 at% Ni) foil has a potential to impact on atmospheric pressure chemical vapor deposition growth of large-area bilayer graphene film.The South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation (NRF) of South Africa (grant no. 97994). M.J. Madito acknowledges the financial support from University of Pretoria and NRF for his PhD studies.http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-45552017-05-31Physic

    A dilute Cu(Ni) alloy for synthesis of large-area Bernal satcked bilayer graphene using atmospheric pressure chemical vapour deposition

    Get PDF
    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.The South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa (Grant No. 97994). M. J. Madito acknowledges the financial support from university of Pretoria and NRF for his Ph.D. studies.http://scitation.aip.org/content/aip/journal/japam2016Physic

    The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation

    Get PDF
    We give a theoretical analysis of published experimental studies of the effects of impurities and disorder on the superconducting transition temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X (where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3). The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by magnetic impurities in singlet superconductors, including s-wave superconductors and by non-magnetic impurities in a non-s-wave superconductor. We show that various sources of disorder lead to the suppression of T_c as described by the AG formula. This is confirmed by the excellent fit to the data, the fact that these materials are in the clean limit and the excellent agreement between the value of the interlayer hopping integral, t_perp, calculated from this fit and the value of t_perp found from angular-dependant magnetoresistance and quantum oscillation experiments. If the disorder is, as seems most likely, non-magnetic then the pairing state cannot be s-wave. We show that the cooling rate dependence of the magnetisation is inconsistent with paramagnetic impurities. Triplet pairing is ruled out by several experiments. If the disorder is non-magnetic then this implies that l>=2, in which case Occam's razor suggests that d-wave pairing is realised. Given the proximity of these materials to an antiferromagnetic Mott transition, it is possible that the disorder leads to the formation of local magnetic moments via some novel mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave superconductors or else they display a novel mechanism for the formation of localised moments. We suggest systematic experiments to differentiate between these scenarios.Comment: 18 pages, 5 figure

    Procediment d’Oferta General de places de pràctiques

    Get PDF
    Previous calculations on model systems for the cooperative binding of two NO2 molecules to carbon nanotubes using density functional theory and second order Moller–Plesset perturbation theory gave results differing by 30 kcal/mol. Quantum Monte Carlo calculations are performed to study the role of electronic correlations in these systems and resolve the discrepancy between these previous calculations. Compared to QMC binding energies, MP2 and LDA are shown to overbind, while B3LYP and BPW91 underbind. PW91 gives the best agreement with QMC with a binding energy differing by only 3 kcal/mol. Basis set effects are also shown to be important
    • …
    corecore