109 research outputs found

    Fabric Investigation of Natural Sensitive Clay from 3D Nano- And Microtomography Data

    Get PDF
    The three-dimensional (3D) fabric in natural sensitive clay is quantified from a combination of high resolution nano and microtomographies, scanning electron microscopy, and dynamic light scattering. Although the speckle arising from clay particles and the pores they enclose is discerned in the nanotomography data and compare well with scanning electron microscopy (SEM) images on the same clay, the individual platelet-shaped clay particles cannot be segmented for subsequent quantitative analysis. Regardless, a very wide range of particle sizes - 0.1-300 μm - was detected using the current state-of-the-art in imaging and postprocessing. The measured aspect ratios range was 2.5\ub11; hence, the particles identified were not clay platelets but, rather, mechanically weathered particles embedded in the clay matrix. Furthermore, the smaller particle sizes <80 μm presented a consistent 22-23\ub0 deviation in orientation from the horizontal plane, whereas the larger fractions had a horizontal orientation. The latter finding agrees well with prior findings on the inclination of the clay minerals using small angle X-ray scattering. Finally, the measured mean particle size of 450 nm determined from the nano data is corroborated by an independent determination of particle sizes using dynamic light scattering

    Assessment of ovarian cancer tumors treated with intraperitoneal cisplatin therapy by nanoscopic X-ray fluorescence imaging

    Get PDF
    Ovarian cancer is amongst the most common types of cancer in women, with a relatively low overall cure rate of approximately 30%. This is therefore an important incentive to urge for further research in order to maximize the chances of survival for these patients. Intraperitoneal chemotherapy with Cisplatin is an effective treatement for ovarian cancer; however, many questions still remain concerning the ideal treatment protocol and tumor resistance towards the drug, which should be resolved for optimal application of this therapy. For the first time in-vivo grown tumors treated with both hyper- and normothermic intraperitoneal chemotherapy have been studied using nano-XRF spectroscopy to examine the platinum (Pt) distribution within the analyzed tissues. These measurements prove Pt resides predominantly outsides the cancer cells in the stroma of the tissue. These findings indicate the resistance mechanism of the cancer cells prevents Cisplatin from diffusing through their cell membranes. This is an important addition to the existing knowledge on the resistance mechanism providing insights which might help to overcome this effect. In our aim to find the optimal treatment protocol, no significant differences were found between the two examined procedures. A more extensive data set will be needed to draw definite conclusions

    Binder-free CNT cathodes for Li-O2_2 batteries with more than one life

    Full text link
    Li-O2_2 batteries (LOB) performance degradation ultimately occurs through the accumulation of discharge products and irreversible clogging of the porous electrode during the cycling. Electrode binder degradation in the presence of reduced oxygen species can result in additional coating of the conductive surface, exacerbating capacity fading. Herein, we establish a facile method to fabricate free-standing, binder-free electrodes for LOBs in which multi-wall carbon nanotubes (MWCNT) form cross-linked networks exhibiting high porosity, conductivity, and flexibility. These electrodes demonstrate high reproducibility upon cycling in LOBs. After cell death, efficient and inexpensive methods to wash away the accumulated discharge products are demonstrated, as reconditioning method. The second life usage of these electrodes is validated, without noticeable loss of performance. These findings aim to assist in the development of greener high energy density batteries while reducing manufacturing and recycling costs.Comment: 24 pages, 6 figures, 10 figures in S

    Synchrotron-based nu-XRF mapping and mu-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin

    Get PDF
    The increasing prevalence of tattoos provoked safety concerns with respect to particle distribution and effects inside the human body. We used skin and lymphatic tissues from human corpses to address local biokinetics by means of synchrotron X-ray fluorescence (XRF) techniques at both the micro (mu) and nano (nu) scale. Additional advanced mass spectrometry-based methodology enabled to demonstrate simultaneous transport of organic pigments, heavy metals and titanium dioxide from skin to regional lymph nodes. Among these compounds, organic pigments displayed the broadest size range with smallest species preferentially reaching the lymph nodes. Using synchrotron mu-FTIR analysis we were also able to detect ultrastructural changes of the tissue adjacent to tattoo particles through altered amide I alpha-helix to beta-sheet protein ratios and elevated lipid contents. Altogether we report strong evidence for both migration and long-term deposition of toxic elements and tattoo pigments as well as for conformational alterations of biomolecules that likely contribute to cutaneous inflammation and other adversities upon tattooing

    Boosting spatial resolution by incorporating periodic boundary conditions into single-distance hard-x-ray phase retrieval

    Full text link
    A simple coherent-imaging method due to Paganin et al. is widely employed for phase-amplitude reconstruction of samples using a single paraxial x-ray propagation-based phase-contrast image. The method assumes that the sample-to-detector distance is sufficiently small for the associated Fresnel number to be large compared to unity. The algorithm is particularly effective when employed in a tomographic setting, using a single propagation-based phase-contrast image for each projection. Here we develop a simple extension of the method, which improves the reconstructed contrast of very fine sample features. This provides first-principles motivation for boosting fine spatial detail associated with high Fourier frequencies, relative to the original method, and was inspired by several recent works employing empirically-obtained Fourier filters to a similar end

    Liquid – liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent

    Get PDF
    Cyphochilus beetle scales are amongst the brightest structural whites in nature, being highly opacifying whilst extremely thin. However, the formation mechanism for the voided intra- scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided chitin networks of intact white scales of Cyphochilus and Lepidiota stigma. Chitin-filling frac- tions are found to be 31 ± 2% for Cyphochilus and 34 ± 1% for Lepidiota stigma, indicating previous measurements overestimated their density. Optical simulations using finite- difference time domain for the chitin morphologies and simulated Cahn-Hilliard spinodal structures show excellent agreement. Reflectance curves spanning filling fraction of 5-95% for simulated spinodal structures, pinpoint optimal whiteness for 25% chitin filling. We make a simulacrum from a polymer undergoing a strong solvent quench, resulting in highly reflective ( 94%) white films. In-situ X-ray scattering confirms the nanostructure is formed through spinodal decomposition phase separation. We conclude that the ultra-white beetle scale nanostructure is made via liquid–liquid phase separation
    • …
    corecore