333 research outputs found

    One and a Half Decades of Apartment Loss and Condominium Growth: Changes in Chicago\u27s Residential Building Stock

    Get PDF
    We use data from the Cook County Assessor to document the decline in Chicago apartments and growth in condominium units from 1989 to 2004. While the total number of housing units in Chicago remained approximately constant at a little over one million, we find that at least 44,637 and perhaps as many as 97,894 apartment units were removed from Chicago’s housing stock during this period. Over the same period 102,408 condominium units have been added to the housing stock. We provide tables and maps that show the changes by in small apartments (less than six units), large apartments (7+ units) and condominiums by community area. Loss of small and large apartment buildings has been widespread across the entire city. Condominium growth has been most intense on the Northeast, Near South and Near West Sides. Some, but not all, of the community areas that lost large numbers of apartments gained condominiums. On average, across the city as a whole, for each 1,000 additional condominium units a community area gained, it lost 27 small apartment buildings and about 6 large apartment buildings

    Impact of a high-fat meal on assessment of clopidogrel-induced platelet inhibition in healthy subjects.

    Get PDF
    BACKGROUND: Ideal conditions for platelet reactivity testing are critical for optimal selection of a P2Y12 inhibitor. Data are inconsistent regarding the impact of high-fat meals on test assessment. METHODS: Participants included 12 healthy subjects not taking antiplatelet drugs after a 12-hour fast. After baseline assessment, subjects were given a 600 mg dose of clopidogrel. Four hours later, maximum platelet inhibition was tested in the fasting state by light transmission aggregometry (LTA), VerifyNow P2Y12, vasodilator-stimulated phosphoprotein (VASP), and whole blood aggregometry (WBA). Subjects were then provided a high-fat meal, and platelet function was evaluated two hours later. Change in measured platelet aggregation by LTA was the primary endpoint of the study. The Wilcoxon Rank Sum test was used to compare the change in platelet reactivity between fasting and non-fasting conditions. The Spearman rho (ρ) correlation coefficient was used to evaluate the association between fasting platelet reactivity and the change following a high-fat meal. RESULTS: No significant change occurred in maximal light transmission, as assessed by LTA with 5 μM ADP (p = 0.15) and with 20 μM ADP (p = 0.07). There was a significant change in the area under the curve with 5 μM ADP (p = 0.03) but not with 20 μM ADP (p = 0.18). Although there was no significant change with the VerifyNow P2Y12 assay (p = 0.16), the change was correlated with the initial fasting value (Spearman\u27s rho p = 0.008). The VASP assay and WBA varied minimally. CONCLUSION: The high-fat meal did not significantly alter platelet function assessment of commonly used platelet function tests. Greater intra-subject variability existed for the optically-dependent compared with non-optically dependent tests. TRIAL REGISTRATION: NCT01307657

    The effect of habitual and experimental antiperspirant and deodorant product use on the armpit microbiome

    Get PDF
    An ever expanding body of research investigates the human microbiome in general and the skin microbiome in particular. Microbiomes vary greatly from individual to individual. Understanding the factors that account for this variation, however, has proven challenging, with many studies able to account statistically for just a small proportion of the inter-individual variation in the abundance, species richness or composition of bacteria. The human armpit has long been noted to host a high biomass bacterial community, and recent studies have highlighted substantial inter-individual variation in armpit bacteria, even relative to variation among individuals for other body habitats. One obvious potential explanation for this variation has to do with the use of personal hygiene products, particularly deodorants and antiperspirants. Here we experimentally manipulate product use to examine the abundance, species richness, and composition of bacterial communities that recolonize the armpits of people with different product use habits. In doing so, we find that when deodorant and antiperspirant use were stopped, culturable bacterial density increased and approached that found on individuals who regularly do not use any product. In addition, when antiperspirants were subsequently applied, bacterial density dramatically declined. These culture-based results are in line with sequence-based comparisons of the effects of long-term product use on bacterial species richness and composition. Sequence-based analyses suggested that individuals who habitually use antiperspirant tended to have a greater richness of bacterial OTUs in their armpits than those who use deodorant. In addition, individuals who used antiperspirants or deodorants long-term, but who stopped using product for two or more days as part of this study, had armpit communities dominated by Staphylococcaceae, whereas those of individuals in our study who habitually used no products were dominated by Corynebacterium. Collectively these results suggest a strong effect of product use on the bacterial composition of armpits. Although stopping the use of deodorant and antiperspirant similarly favors presence of Staphylococcaceae over Corynebacterium, their differential modes of action exert strikingly different effects on the richness of other bacteria living in armpit communities

    The Impact of an Urban Wal-Mart Store on Area Businesses: An Evaluation of One Chicago Neighborhood\u27s Experience

    Get PDF
    Having achieved nearly complete coverage of non-urban and suburban markets, mega-retailer Wal-Mart has turned its attention to urban expansion. Evaluations of Wal-Mart’s impact on urban retail businesses and local employment are necessary to inform policy makers, scholars, and community activists looking to improve economic opportunities for inner-city residents. This study focuses on the Wal-Mart store that opened on the West Side of Chicago in September 2006

    Relation of chlorophyll fluorescence sensitive reflectance ratios to carbon flux measurements of Montanne grassland and Norway spruce forest ecosystems in the temperate zone

    Get PDF
    We explored ability of reflectance vegetation indexes (VIs) related to chlorophyll fluorescence emission (R686/R630, R 740/R800) and de-epoxidation state of xanthophyll cycle pigments (PRI, calculated as (R531 - R570) (R 531 - R570)) to track changes in the CO2 assimilation rate and Light Use Efficiency (LUE) in montane grassland and Norway spruce forest ecosystems, both at leaf and also canopy level. VIs were measured at two research plots using a ground-based high spatial/spectral resolution imaging spectroscopy technique. No significant relationship between VIs and leaf light-saturated CO2 assimilation (AMAX) was detected in instantaneous measurements of grassland under steady-state irradiance conditions. Once the temporal dimension and daily irradiance variation were included into the experimental setup, statistically significant changes in VIs related to tested physiological parameters were revealed. ΔPRI and Δ(R686 R630) of grassland plant leaves under dark-to-full sunlight transition in the scale of minutes were significantly related to AMAX (R2 = 0.51). In the daily course, the variation of VIs measured in one-hour intervals correlated well with the variation of Gross Primary Production (GPP), Net Ecosystem Exchange (NEE), and LUE estimated via the eddy-covariance flux tower. Statistical results were weaker in the case of the grassland ecosystem, with the strongest statistical relation of the index R686 R630 with NEE and GPP

    Scanning electrochemical microscopy as a local probe of oxygen permeability in cartilage

    Get PDF
    The use of scanning electrochemical microscopy, a high-resolution chemical imaging technique, to probe the distribution and mobility of solutes in articular cartilage is described. In this application, a mobile ultramicroelectrode is positioned close (not, vert, similar1 μm) to the cartilage sample surface, which has been equilibrated in a bathing solution containing the solute of interest. The solute is electrolyzed at a diffusion-limited rate, and the current response measured as the ultramicroelectrode is scanned across the sample surface. The topography of the samples was determined using Ru(CN)64−, a solute to which the cartilage matrix was impermeable. This revealed a number of pit-like depressions corresponding to the distribution of chondrocytes, which were also observed by atomic force and light microscopy. Subsequent imaging of the same area of the cartilage sample for the diffusion-limited reduction of oxygen indicated enhanced, but heterogeneous, permeability of oxygen across the cartilage surface. In particular, areas of high permeability were observed in the cellular and pericellular regions. This is the first time that inhomogeneities in the permeability of cartilage toward simple solutes, such as oxygen, have been observed on a micrometer scale

    Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a c-Jun N-terminal kinase- and toll-like receptor 4-dependent and retinol-independent mechanism

    Get PDF
    Retinol-binding protein 4 (RBP4), the sole retinol transporter in blood, is secreted from adipocytes and liver. Serum RBP4 levels correlate highly with insulin resistance, other metabolic syndrome factors, and cardiovascular disease. Elevated serum RBP4 causes insulin resistance, but the molecular mechanisms are unknown. Here we show that RBP4 induces expression of proinflammatory cytokines in mouse and human macrophages and thereby indirectly inhibits insulin signaling in cocultured adipocytes. This occurs through activation of c-Jun N-terminal protein kinase (JNK) and Toll-like receptor 4 (TLR4) pathways independent of the RBP4 receptor, STRA6. RBP4 effects are markedly attenuated in JNK1-/- JNK2-/- macrophages and TLR4-/- macrophages. Because RBP4 is a retinol-binding protein, we investigated whether these effects are retinol dependent. Unexpectedly, retinol-free RBP4 (apo-RBP4) is as potent as retinol-bound RBP4 (holo-RBP4) in inducing proinflammatory cytokines in macrophages. Apo-RBP4 is likely to be physiologically significant since RBP4/retinol ratios are increased in serum of lean and obese insulin-resistant humans compared to ratios in insulin-sensitive humans, indicating that higher apo-RBP4 is associated with insulin resistance independent of obesity. Thus, RBP4 may cause insulin resistance by contributing to the development of an inflammatory state in adipose tissue through activation of proinflammatory cytokines in macrophages. This process reveals a novel JNK- and TLR4-dependent and retinol- and STRA6-independent mechanism of action for RBP4

    Mouse Model of Alagille Syndrome and Mechanisms of Jagged1 Missense Mutations.

    Get PDF
    BACKGROUND & AIMS: Alagille syndrome is a genetic disorder characterized by cholestasis, ocular abnormalities, characteristic facial features, heart defects, and vertebral malformations. Most cases are associated with mutations in JAGGED1 (JAG1), which encodes a Notch ligand, although it is not clear how these contribute to disease development. We aimed to develop a mouse model of Alagille syndrome to elucidate these mechanisms. METHODS: Mice with a missense mutation (H268Q) in Jag1 (Jag1+/Ndr mice) were outbred to a C3H/C57bl6 background to generate a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice). Liver tissues were collected at different timepoints during development, analyzed by histology, and liver organoids were cultured and analyzed. We performed transcriptome analysis of Jag1Ndr/Ndr livers and livers from patients with Alagille syndrome, cross-referenced to the Human Protein Atlas, to identify commonly dysregulated pathways and biliary markers. We used species-specific transcriptome separation and ligand-receptor interaction assays to measure Notch signaling and the ability of JAG1Ndr to bind or activate Notch receptors. We studied signaling of JAG1 and JAG1Ndr via NOTCH 1, NOTCH2, and NOTCH3 and resulting gene expression patterns in parental and NOTCH1-expressing C2C12 cell lines. RESULTS: Jag1Ndr/Ndr mice had many features of Alagille syndrome, including eye, heart, and liver defects. Bile duct differentiation, morphogenesis, and function were dysregulated in newborn Jag1Ndr/Ndr mice, with aberrations in cholangiocyte polarity, but these defects improved in adult mice. Jag1Ndr/Ndr liver organoids collapsed in culture, indicating structural instability. Whole-transcriptome sequence analyses of liver tissues from mice and patients with Alagille syndrome identified dysregulated genes encoding proteins enriched at the apical side of cholangiocytes, including CFTR and SLC5A1, as well as reduced expression of IGF1. Exposure of Notch-expressing cells to JAG1Ndr, compared with JAG1, led to hypomorphic Notch signaling, based on transcriptome analysis. JAG1-expressing cells, but not JAG1Ndr-expressing cells, bound soluble Notch1 extracellular domain, quantified by flow cytometry. However, JAG1 and JAG1Ndr cells each bound NOTCH2, and signaling from NOTCH2 signaling was reduced but not completely inhibited, in response to JAG1Ndr compared with JAG1. CONCLUSIONS: In mice, expression of a missense mutant of Jag1 (Jag1Ndr) disrupts bile duct development and recapitulates Alagille syndrome phenotypes in heart, eye, and craniofacial dysmorphology. JAG1Ndr does not bind NOTCH1, but binds NOTCH2, and elicits hypomorphic signaling. This mouse model can be used to study other features of Alagille syndrome and organ development
    corecore