10 research outputs found
Numerical optimisation of thermoset composites manufacturing processes: A review
The impetus for higher performance, robustness and efficiency in the aerospace, automotive and energy industries has been reflected in more stringent requirements which the composite manufacturing industry needs to comply with. The process design challenges associated with this are significant and can be only partially met by integration of simulation in the design loop. The implementation of numerical optimisation tools is therefore necessary. The development of methodologies linking predictive simulation tools with numerical optimisation techniques is pivotal to identify and therefore develop optimal design conditions that allow full exploitation of the efficiency opportunities in composite manufacturing. Numerical and experimental results concerning the optimisation techniques and methodologies implemented in literature to address the optimisation of thermoset composite manufacturing processes are presented and analysed in this study
A Review of Damage Tolerance and Mechanical Behavior of Interlayer Hybrid Fiber Composites for Wind Turbine Blades
This review investigates interlayer hybrid fiber composites for wind turbine blades (WTBs), focusing on their potential to enhance blade damage tolerance and maintain structural integrity. The objectives of this review are: (I) to assess the effect of different hybrid lay-up configurations on the damage tolerance and failure analysis of interlayer hybrid fiber composites and (II) to identify potential fiber combinations for WTBs to supplement or replace existing glass fibers. Our method involves comprehensive qualitative and quantitative analyses of the existing literature. Qualitatively, we assess the damage tolerance—with an emphasis on impact load—and failure analysis under blades operational load of six distinct hybrid lay-up configurations. Quantitatively, we compare tensile and flexural properties—essential for WTBs structural integrity—of hybrid and glass composites. The qualitative review reveals that placing high elongation (HE)-low stiffness (LS) fibers, e.g., glass, on the impacted side reduces damage size and improves residual properties of hybrid composites. Placing low elongation (LE)-high stiffness (HS) fibers, e.g., carbon, in middle layers, protects them during impact load and equips hybrid composites with mechanisms that delay failure under various load conditions. A sandwich lay-up with HE-LS fibers on the outermost and LE-HS fibers in the innermost layers provides the best balance between structural integrity and post-impact residual properties. This lay-up benefits from synergistic effects, including fiber bridging, enhanced buckling resistance, and the mitigation of LE-HS fiber breakage. Quantitatively, hybrid synthetic/natural composites demonstrate nearly a twofold improvement in mechanical properties compared to natural fiber composites. Negligible enhancement (typically 10%) is observed for hybrid synthetic/synthetic composites relative to synthetic fiber composites. Additionally, glass/carbon, glass/flax, and carbon/flax composites are potential alternatives to present glass laminates in WTBs. This review is novel as it is the first attempt to identify suitable interlayer hybrid fiber composites for WTBs
Effects of Onshore and Offshore Environmental Parameters on the Leading Edge Erosion of Wind Turbine Blades: A Comparative Study
Abstract
The presence of rain-induced leading edge erosion of wind turbine blades (WTBs) necessitates the development of erosion models. One of the essential parameters for erosion modeling is the relative impact velocity between rain droplets and the rotating blade. Based on this parameter, the erosion damage rate of a WTB is calculated to estimate the expected leading edge lifetime. The environmental conditions that govern this parameter have site-specific variations, and thus, rain and wind loading on a turbine differ for onshore and offshore locations. In addition, there are wave loads present in the offshore environment. The present paper tries to provide guidelines for erosion modeling and investigates whether there are differences in erosion of blades due to (1) varying rainfall conditions modeled using different droplet size distributions for onshore and offshore locations in combination with (2) winds of varying turbulence intensities and (3) wave-induced loads. Aero-hydro-servo-elastic simulations are carried out for an onshore wind turbine (WT) and a monopile-supported offshore WT. Furthermore, erosion variables such as the relative impact velocities and the associated erosion damage rate of a blade are analyzed for various blade azimuth angles. The study shows that the rainfall intensity and turbulence intensity minorly influence the impact velocity and pressure but have a substantial effect on the overall erosion damage rate. Additionally, a significantly higher erosion damage rate is found for blades exposed to offshore rainfall conditions than for blades under onshore rainfall conditions. Furthermore, no substantial influence on erosion is found because of wave-induced loads.</jats:p
A Study on Through-the-Thickness Heating in Continuous Ultrasonic Welding of Thermoplastic Composites
Continuous ultrasonic welding is a promising technique for joining thermoplastic composites structures together. The aim of this study was to gain further insight into what causes higher through-the-thickness heating in continuous ultrasonic welding of thermoplastic composites as compared to the static process. Thermocouples were used to measure temperature evolutions at the welding interface and within the adherends. To understand the mechanisms causing the observed temperature behaviours, the results were compared to temperature measurements from an equivalent static welding process and to the predictions from a simplified heat transfer model. Despite the significantly higher temperatures measured at the welding interface for the continuous process, viscoelastic bulk heat generation and not thermal conduction from the interface was identified as the main cause of higher through-the-thickness heating in the top adherend. Interestingly the top adherend seemed to absorb most of the vibrational energy in the continuous process as opposed to a more balanced energy share between the top and bottom adherend in the static process. Finally, the higher temperatures at the welding interface in continuous ultrasonic welding were attributed to pre-heating of the energy director due to the vibrations being transmitted downstream of the sonotrode, to reduced squeeze-flow of energy director due to the larger adherend size, and to heat flux originating downstream as the welding process continues.</jats:p
Minimum leading edge protection application length to combat rain-induced erosion of wind turbine blades
Leading edge erosion (LEE) repairs of wind turbine blades (WTBs) involve infield application of leading edge protection (LEP) solutions. The industry is currently aiming to use factory based LEP coatings that can applied to the WTBs before they are shipped out for installation. However, one of the main challenges related to these solutions is the choice of a minimum LEP application length to be applied in the spanwise direction of the WTBs. Generally, coating suppliers apply 10–20 m of LEP onto the blades starting from the tip of the blade using the “rule of thumb”, and no studies in the literature exist that stipulate how these LEP lengths can be calculated. In this study, we extend the scope of a recently developed long-term probabilistic framework to determine the minimum LEP application length required for WTBs to combat rain-induced erosion. A parametric study is performed where different wind turbines with varying power ratings of 2.1 MW to 15 MW at different Dutch sites ranging from inland to coastal are considered. The results of the study show that the LEP application length is sensitive to the choice of the site, as well as the turbine attributes. Further, LEP lengths for WTBs are found to be the highest for turbines installed at coastal sites and turbines with higher power ratings. A detailed investigation is further performed to check the sensitivity of the LEP application length with the wind turbine parameters. The results of the study are expected to provide guidelines to the industry for efficient repair strategies for WTB
Minimum leading edge protection application length to combat rain-induced erosion of wind turbine blades
Leading edge erosion (LEE) repairs of wind turbine blades (WTBs) involve infield application of leading edge protection (LEP) solutions. The industry is currently aiming to use factory based LEP coatings that can applied to the WTBs before they are shipped out for installation. However, one of the main challenges related to these solutions is the choice of a minimum LEP application length to be applied in the spanwise direction of the WTBs. Generally, coating suppliers apply 10–20 m of LEP onto the blades starting from the tip of the blade using the “rule of thumb”, and no studies in the literature exist that stipulate how these LEP lengths can be calculated. In this study, we extend the scope of a recently developed long-term probabilistic framework to determine the minimum LEP application length required for WTBs to combat rain-induced erosion. A parametric study is performed where different wind turbines with varying power ratings of 2.1 MW to 15 MW at different Dutch sites ranging from inland to coastal are considered. The results of the study show that the LEP application length is sensitive to the choice of the site, as well as the turbine attributes. Further, LEP lengths for WTBs are found to be the highest for turbines installed at coastal sites and turbines with higher power ratings. A detailed investigation is further performed to check the sensitivity of the LEP application length with the wind turbine parameters. The results of the study are expected to provide guidelines to the industry for efficient repair strategies for WTB
Minimum leading edge protection application length to combat rain-induced erosion of wind turbine blades
Leading edge erosion (LEE) repairs of wind turbine blades (WTBs) involve infield application of leading edge protection (LEP) solutions. The industry is currently aiming to use factory based LEP coatings that can applied to the WTBs before they are shipped out for installation. However, one of the main challenges related to these solutions is the choice of a minimum LEP application length to be applied in the spanwise direction of the WTBs. Generally, coating suppliers apply 10–20 m of LEP onto the blades starting from the tip of the blade using the “rule of thumb”, and no studies in the literature exist that stipulate how these LEP lengths can be calculated. In this study, we extend the scope of a recently developed long-term probabilistic framework to determine the minimum LEP application length required for WTBs to combat rain-induced erosion. A parametric study is performed where different wind turbines with varying power ratings of 2.1 MW to 15 MW at different Dutch sites ranging from inland to coastal are considered. The results of the study show that the LEP application length is sensitive to the choice of the site, as well as the turbine attributes. Further, LEP lengths for WTBs are found to be the highest for turbines installed at coastal sites and turbines with higher power ratings. A detailed investigation is further performed to check the sensitivity of the LEP application length with the wind turbine parameters. The results of the study are expected to provide guidelines to the industry for efficient repair strategies for WTB
Minimum Leading Edge Protection Application Length to Combat Rain-Induced Erosion of Wind Turbine Blades
Leading edge erosion (LEE) repairs of wind turbine blades (WTBs) involve infield application of leading edge protection (LEP) solutions. The industry is currently aiming to use factory based LEP coatings that can applied to the WTBs before they are shipped out for installation. However, one of the main challenges related to these solutions is the choice of a minimum LEP application length to be applied in the spanwise direction of the WTBs. Generally, coating suppliers apply 10–20 m of LEP onto the blades starting from the tip of the blade using the “rule of thumb”, and no studies in the literature exist that stipulate how these LEP lengths can be calculated. In this study, we extend the scope of a recently developed long-term probabilistic framework to determine the minimum LEP application length required for WTBs to combat rain-induced erosion. A parametric study is performed where different wind turbines with varying power ratings of 2.1 MW to 15 MW at different Dutch sites ranging from inland to coastal are considered. The results of the study show that the LEP application length is sensitive to the choice of the site, as well as the turbine attributes. Further, LEP lengths for WTBs are found to be the highest for turbines installed at coastal sites and turbines with higher power ratings. A detailed investigation is further performed to check the sensitivity of the LEP application length with the wind turbine parameters. The results of the study are expected to provide guidelines to the industry for efficient repair strategies for WTBs.</jats:p
Bondline Thickness Effects on Damage Tolerance of Adhesive Joints Subjected to Localized Impact Damages: Application to Leading Edge of Wind Turbine Blades
The leading edges of wind turbine blades are adhesively bonded composite sections that are susceptible to impact loads during offshore installation. The impact loads can cause localized damages at the leading edges that necessitate damage tolerance assessment. However, owing to the complex material combinations together with varying bondline thicknesses along the leading edges, damage tolerance investigation of blades at full scale is challenging and costly. In the current paper, we design a coupon scale test procedure for investigating bondline thickness effects on damage tolerance of joints after being subjected to localized impact damages. Joints with bondline thicknesses (0.6 mm, 1.6 mm, and 2.6 mm) are subjected to varying level of impact energies (5 J, 10 J, and 15 J), and the dominant failure modes are identified together with analysis of impact kinematics. The damaged joints are further tested under tensile lap shear and their failure loads are compared to the intact values. The results show that for a given impact energy, the largest damage area was obtained for the thickest joint. In addition, the joints with the thinnest bondline thicknesses displayed the highest failure loads post impact, and therefore the greatest damage tolerance. For some of the thin joints, mechanical interlocking effects at the bondline interface increased the failure load of the joints by 20%. All in all, the coupon scale tests indicate no significant reduction in failure loads due to impact, hence contributing to the question of acceptable localized damage, i.e., damage tolerance with respect to static strength of the whole blade.</jats:p
Bondline thickness effects on damage tolerance of adhesive joints subjected to localized impact damages: Application to leading edge of wind turbine blades
The leading edges of wind turbine blades are adhesively bonded composite sections that are susceptible to impact loads during offshore installation. The impact loads can cause localized damages at the leading edges that necessitate damage tolerance assessment. However, owing to the complex material combinations together with varying bondline thicknesses along the leading edges, damage tolerance investigation of blades at full scale is challenging and costly. In the current paper, we design a coupon scale test procedure for investigating bondline thickness effects on damage tolerance of joints after being subjected to localized impact damages. Joints with bondline thicknesses (0.6 mm, 1.6 mm, and 2.6 mm) are subjected to varying level of impact energies (5 J, 10 J, and 15 J), and the dominant failure modes are identified together with analysis of impact kinematics. The damaged joints are further tested under tensile lap shear and their failure loads are compared to the intact values. The results show that for a given impact energy, the largest damage area was obtained for the thickest joint. In addition, the joints with the thinnest bondline thicknesses displayed the highest failure loads post impact, and therefore the greatest damage tolerance. For some of the thin joints, mechanical interlocking effects at the bondline interface increased the failure load of the joints by 20%. All in all, the coupon scale tests indicate no significant reduction in failure loads due to impact, hence contributing to the question of acceptable localized damage, i.e., damage tolerance with respect to static strength of the whole blade
