4 research outputs found

    A novel panel of short mononucleotide repeats linked to informative polymorphisms enabling effective high volume low cost discrimination between mismatch repair deficient and proficient tumours

    Get PDF
    <div><p>Somatic mutations in mononucleotide repeats are commonly used to assess the mismatch repair status of tumours. Current tests focus on repeats with a length above 15bp, which tend to be somatically more unstable than shorter ones. These longer repeats also have a substantially higher PCR error rate, and tests that use capillary electrophoresis for fragment size analysis often require expert interpretation. In this communication, we present a panel of 17 short repeats (length 7–12bp) for sequence-based microsatellite instability (MSI) testing. Using a simple scoring procedure that incorporates the allelic distribution of the mutant repeats, and analysis of two cohort of tumours totalling 209 samples, we show that this panel is able to discriminate between MMR proficient and deficient tumours, even when constitutional DNA is not available. In the training cohort, the method achieved 100% concordance with fragment analysis, while in the testing cohort, 4 discordant samples were observed (corresponding to 97% concordance). Of these, 2 showed discrepancies between fragment analysis and immunohistochemistry and one was reclassified after re-testing using fragment analysis. These results indicate that our approach offers the option of a reliable, scalable routine test for MSI.</p></div

    A Randomized Placebo-Controlled Prevention Trial of Aspirin and/or Resistant Starch in Young People with Familial Adenomatous Polyposis

    Get PDF
    Evidence supporting aspirin and resistant starch (RS) for colorectal cancer prevention comes from epidemiologic and laboratory studies (aspirin and RS) and randomized controlled clinical trials (aspirin). Familial adenomatous polyposis (FAP) strikes young people and, untreated, confers virtually a 100% risk of colorectal cancer and early death. We conducted an international, multicenter, randomized, placebo-controlled trial of aspirin (600 mg/d) and/or RS (30 g/d) for from 1 to 12 years to prevent disease progression in FAP patients from 10 to 21 years of age. In a 2 x 2 factorial design, patients were randomly assigned to the following four study arms: aspirin plus RS placebo; RS plus aspirin placebo; aspirin plus RS; RS placebo plus aspirin placebo; they were followed with standard annual clinical examinations including endoscopy. The primary endpoint was polyp number in the rectum and sigmoid colon (at the end of intervention), and the major secondary endpoint was size of the largest polyp. A total of 206 randomized FAP patients commenced intervention, of whom 133 had at least one follow-up endoscopy and were therefore included in the primary analysis. Neither intervention significantly reduced polyp count in the rectum and sigmoid colon: aspirin relative risk = 0.77 (95% CI, 0.54-1.10; versus nonaspirin arms); RS relative risk = 1.05 (95% CI, 0.73-1.49; versus non-RS arms). There was a trend toward a smaller size of largest polyp in patients treated with aspirin versus nonaspirin-mean 3.8 mm versus 5.5 mm for patients treated 1 or more years (adjusted P = 0.09) and mean 3.0 rum versus 6.0 mm for patients treated more than 1 year (P = 0.02); there were similar weaker trends with RS versus non-RS. Exploratory translational endpoints included crypt length (which was significantly shorter in normal-appearing mucosa in the RS group over time) and laboratory measures of proliferation (including Ki67). This clinical trial is the largest ever conducted in the setting of FAP and found a trend of reduced polyp load (number and size) with 600 mg of aspirin daily. RS had no clinical effect on adenomas. Cancer Prey Res; 4(5); 655-65. (c) 2011 AACR.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Tomato TFT1 Is Required for PAMP-Triggered Immunity and Mutations that Prevent T3S Effector XopN from Binding to TFT1 Attenuate Xanthomonas Virulence

    Get PDF
    XopN is a type III effector protein from Xanthomonas campestris pathovar vesicatoria that suppresses PAMP-triggered immunity (PTI) in tomato. Previous work reported that XopN interacts with the tomato 14-3-3 isoform TFT1; however, TFT1's role in PTI and/or XopN virulence was not determined. Here we show that TFT1 functions in PTI and is a XopN virulence target. Virus-induced gene silencing of TFT1 mRNA in tomato leaves resulted in increased growth of Xcv ΔxopN and Xcv ΔhrpF demonstrating that TFT1 is required to inhibit Xcv multiplication. TFT1 expression was required for Xcv-induced accumulation of PTI5, GRAS4, WRKY28, and LRR22 mRNAs, four PTI marker genes in tomato. Deletion analysis revealed that the XopN C-terminal domain (amino acids 344–733) is sufficient to bind TFT1. Removal of amino acids 605–733 disrupts XopN binding to TFT1 in plant extracts and inhibits XopN-dependent virulence in tomato, demonstrating that these residues are necessary for the XopN/TFT1 interaction. Phos-tag gel analysis and mass spectrometry showed that XopN is phosphorylated in plant extracts at serine 688 in a putative 14-3-3 recognition motif. Mutation of S688 reduced XopN's phosphorylation state but was not sufficient to inhibit binding to TFT1 or reduce XopN virulence. Mutation of S688 and two leucines (L64,L65) in XopN, however, eliminated XopN binding to TFT1 in plant extracts and XopN virulence. L64 and L65 are required for XopN to bind TARK1, a tomato atypical receptor kinase required for PTI. This suggested that TFT1 binding to XopN's C-terminal domain might be stabilized via TARK1/XopN interaction. Pull-down and BiFC analyses show that XopN promotes TARK1/TFT1 complex formation in vitro and in planta by functioning as a molecular scaffold. This is the first report showing that a type III effector targets a host 14-3-3 involved in PTI to promote bacterial pathogenesis
    corecore