19 research outputs found

    Characterizing uncertainty of the hydrologic impacts of climate change

    Get PDF
    The high climate sensitivity of hydrologic systems, the importance of those systems to society, and the imprecise nature of future climate projections all motivate interest in characterizing uncertainty in the hydrologic impacts of climate change. We discuss recent research that exposes important sources of uncertainty that are commonly neglected by the water management community, especially, uncertainties associated with internal climate system variability, and hydrologic modeling. We also discuss research exposing several issues with widely used climate downscaling methods. We propose that progress can be made following parallel paths: first, by explicitly characterizing the uncertainties throughout the modeling process (rather than using an ad hoc “ensemble of opportunity”) and second, by reducing uncertainties through developing criteria for excluding poor methods/models, as well as with targeted research to improve modeling capabilities. We argue that such research to reveal, reduce, and represent uncertainties is essential to establish a defensible range of quantitative hydrologic storylines of climate change impacts

    Characterizing uncertainty of the hydrologic impacts of climate change

    Get PDF
    The high climate sensitivity of hydrologic systems, the importance of those systems to society, and the imprecise nature of future climate projections all motivate interest in characterizing uncertainty in the hydrologic impacts of climate change. We discuss recent research that exposes important sources of uncertainty that are commonly neglected by the water management community, especially, uncertainties associated with internal climate system variability, and hydrologic modeling. We also discuss research exposing several issues with widely used climate downscaling methods. We propose that progress can be made following parallel paths: first, by explicitly characterizing the uncertainties throughout the modeling process (rather than using an ad hoc “ensemble of opportunity”) and second, by reducing uncertainties through developing criteria for excluding poor methods/models, as well as with targeted research to improve modeling capabilities. We argue that such research to reveal, reduce, and represent uncertainties is essential to establish a defensible range of quantitative hydrologic storylines of climate change impacts

    Understanding uncertainties in future Colorado River streamflow

    Get PDF
    ArtĂ­culo -- Universidad de Costa Rica. Centro de Investigaciones GeofĂ­sicas, 2014The Colorado River is the primary water source for more than 30 million people in the United States and Mexico. Recent studies that project streamflow changes in the Colorado River all project annual declines, but the magnitude of the projected decreases range from less than 10% to 45% by the mid-twenty-first century. To understand these differences, we address the questions the management community has raised: Why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted? We identify four major sources of disparities among studies that arise from both methodological and model differences. In order of importance, these are differences in 1) the global climate models (GCMs) and emission scenarios used; 2) the ability of land surface and atmospheric models to simulate properly the high-elevation runoff source areas; 3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and 4) the methods used to statistically downscale GCM scenarios. In accounting for these differences, there is substantial evidence across studies that future Colorado River streamflow will be reduced under the current trajectories of anthropogenic greenhouse gas emissions because of a combination of strong temperature-induced runoff curtailment and reduced annual precipitation. Reconstructions of preinstrumental streamflows provide additional insights; the greatest risk to Colorado River streamflows is a multidecadal drought, like that observed in paleoreconstructions, exacerbated by a steady reduction in flows due to climate change. This could result in decades of sustained streamflows much lower than have been observed in the ~100 years of instrumental record.Universidad de Costa Rica. Centro de Investigaciones GeofĂ­sicasLamont-Doherty Earth Observatory of Columbia UniversityUCR::VicerrectorĂ­a de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias BĂĄsicas::Centro de Investigaciones GeofĂ­sicas (CIGEFI

    Hydrologic sensitivities of western U.S. rivers to climate change

    No full text
    Thesis (Ph.D.)--University of Washington, 2013As the climate continues to change, increasing temperatures and changes in precipitation will lead to fundamental changes in the seasonal distribution of streamflow, especially in the western United States where snowmelt plays a key role. These changes will inevitably lead to challenges for water resource managers. There is, however, considerable uncertainty as to the character of these hydrologic changes, especially at local and regional scales (10^2 - 10^5 km^2). My research aims to better understand how climate influences hydrologic processes, with a particular focus on variations in runoff sensitivities to changes in precipitation and temperature, and the use of this information in water management. Using land surface model simulations, I explore the sensitivity of runoff to changes in precipitation (defined as precipitation elasticities, E, the fractional change in runoff divided by the fractional change in precipitation), changes in temperature (defined as temperature sensitivities, S, percent change in runoff per degree change in temperature) and to the combined effect of temperature and precipitation changes. The character of these sensitivities varies considerably depending on how the land surface is simulated (e.g., type of land surface model), the particulars of the location (e.g., elevation, vegetation, soil types), and the season in which changes in temperature and precipitation occur. I explore these variations through hydrologic model experiments in the Colorado and Columbia River basins - two basins which can be considered end points of hydroclimatic variability in the West, and which also have diverse management concerns as existing reservoir storage in these systems varies strongly. The total storage relative to annual inflow ratio of over four in the Colorado River, results in a management focus on total (annual) magnitudes in streamflow, whereas this ratio is about 0.3 in the Columbia River and hence changes in the seasonal distribution of streamflow is the primary driver there. Within this body of work, I use the nature of these hydrologic sensitivities (e.g., spatial and temporal variability, superposition, and the linearity of their underlying functions) to develop two complementary methodologies that can be applied to generate viable first-order estimates of future change for long-term (e.g., 30-year) annual change (applied in the Colorado River basin) and seasonal change (applied in the Pacific Northwest). My results show that these sensitivity-based estimation approaches to future change compare well with the more common, computationally intensive full-simulation approaches that force a hydrologic model with downscaled future climate scenarios. These methods can be applied to newly released climate information to easily assess underlying drivers of change and to bound, at least approximately, the range of future streamflow uncertainties for water resource planners
    corecore