6 research outputs found
In vitro evaluation of natural and methylated cyclodextrins as buccal permeation enhancing system for omeprazole delivery
http://www.sciencedirect.com/science/article/B6T6C-4TB1846-1/2/58c971bfdf400a5dd4f0dfc5d9c2350
In vitro evaluation of natural and methylated cyclodextrins as buccal permeation enhancing system for omeprazole delivery
http://www.sciencedirect.com/science/article/B6T6C-4TB1846-1/2/58c971bfdf400a5dd4f0dfc5d9c2350
mRNA-mediated gene delivery into human progenitor cells promotes highly efficient protein expression
Gene transfer into human CD34+ haematopoietic progenitor cells (HPC) and multi-potent mesenchymal stromal cells (MSC) is an essential tool for numerous in vitro and in vivo applications including therapeutic strategies, such as tissue engineering and gene therapy. Virus based methods may be efficient, but bear risks like tumorigenesis and activation of immune responses. A safer alternative is non-viral gene transfer, which is considered to be less efficient and accomplished with high cell toxicity. The truncated low affinity nerve growth factor receptor (ÄLNGFR) is a marker gene approved for human in vivo application. Human CD34+ HPC and human MSC were transfected with in vitro-transcribed mRNA for ΔLNGFR using the method of nucleofection. Transfection efficiency and cell viability were compared to plasmid-based nucleofection. Protein expression was assessed using flow cytometry over a time period of 10 days. Nucleofection of CD34+ HPC and MSC with mRNA resulted in significantly higher transfection efficiencies compared to plasmid transfection. Cell differentiation assays were performed after selecting ΔLNGFR positive cells using a fluorescent activating cell sorter. Neither cell differentiation of MSC into chondrocytes, adipocytes and osteoblasts, nor differentiation of HPC into burst forming unit erythroid (BFU-E) colony forming unit-granulocyte, erythrocyte, macrophage and megakaryocyte (CFU-GEMM), and CFU-granulocyte-macrophage (GM) was reduced. mRNA based nucleofection is a powerful, highly efficient and non-toxic approach for transient labelling of human progenitor cells or, via transfection of selective proteins, for transient manipulation of stem cell function. It may be useful to transiently manipulate stem cell characteristics and thus combine principles of gene therapy and tissue engineering
The Impact of Vehicles on the Mucoadhesive Properties of Orally Administrated Nanoparticles: a Case Study with Chitosan-4-Thiobutylamidine Conjugate
The aim of this study was to evaluate the impact of various vehicles on mucoadhesive properties of thiolated chitosan nanoparticles both in vitro and in vivo. Nanoparticles (NPs) were prepared by in situ gelation technique followed by labeling with fluorescein diacetate. Comparative studies on mucoadhesion were done with these thiolated chitosan NPs and unmodified chitosan NPs (control). The obtained nanoparticles displayed a mean diameter of 164.2 ± 6.9 nm and a zeta potential of 21.5 ± 5 mV. In an in vitro adhesion study, unhydrated thiolated NPs adhered strongly to freshly excised porcine small intestine, which was more than threefold increase compared to the control. In contrast, in the presence of various vehicles (PEG 300, miglyol 840, PEG 6000, cremophor EL, and caprylic triglyceride), the mucoadhesive properties of thiolated NPs were comparatively weak. Thiolated NPs suspended in caprylic triglyceride, for example, had a percent mucoadhesion of 22.50 ± 5.35% on the mucosa. Furthermore, results from in vivo mucoadhesion studies revealed that the dry form of nanoparticles exhibits the strongest mucoadhesion, followed by nanoparticles suspended in PEG 300, miglyol, and 100 mM phosphate buffer, in that order. Three hours after administration, the gastrointestinal residence time of the dry form of thiolated NPs was up to 3.6-fold prolonged. These findings should contribute to the design of highly effective oral mucoadhesive nanoparticulate drug delivery systems