507 research outputs found

    Through the Looking Glass: Why the "Cosmic Horizon" is not a horizon

    Full text link
    The present standard model of cosmology, Λ\LambdaCDM, contains some intriguing coincidences. Not only are the dominant contributions to the energy density approximately of the same order at the present epoch, but we note that contrary to the emergence of cosmic acceleration as a recent phenomenon, the time averaged value of the deceleration parameter over the age of the universe is nearly zero. Curious features like these in Λ\LambdaCDM give rise to a number of alternate cosmologies being proposed to remove them, including models with an equation of state w = -1/3. In this paper, we examine the validity of some of these alternate models and we also address some persistent misconceptions about the Hubble sphere and the event horizon that lead to erroneous conclusions about cosmology.Comment: Accepted for publication by MNRAS, 6 pages, 3 figure

    Another coincidence problem for Λ\LambdaCDM?

    Full text link
    Over the last nine years of cosmic microwave background observations, the Wilkinson Microwave Anisotropy Probe (WMAPWMAP) results were consistent with a Λ\LambdaCDM cosmological model in which the age of the Universe is one Hubble time, and the time-averaged value of the deceleration parameter is consistent with zero. This curious observation has been put forward as a new coincidence problem for the Λ\LambdaCDM concordance cosmology, which is in fact a `greater' coincidence than the near equality of the density parameters of matter and the cosmological constant. At the moment of writing these conference proceedings, the Planck Collaboration has released its first cosmological data, which revealed a small shift in the Λ\LambdaCDM cosmological parameters when compared to WMAPWMAP. We show that under the assumption of a spatially flat Λ\LambdaCDM cosmology, Planck's results remove this coincidence problem for Λ\LambdaCDM at greater than 99\% confidence level.Comment: 3 pages, 1 figure, proceedings of the 13th Marcel Grossmann meetin

    No Way Back: Maximizing survival time below the Schwarzschild event horizon

    Full text link
    It has long been known that once you cross the event horizon of a black hole, your destiny lies at the central singularity, irrespective of what you do. Furthermore, your demise will occur in a finite amount of proper time. In this paper, the use of rockets in extending the amount of time before the collision with the central singularity is examined. In general, the use of such rockets can increase your remaining time, but only up to a maximum value; this is at odds with the ``more you struggle, the less time you have'' statement that is sometimes discussed in relation to black holes. The derived equations are simple to solve numerically and the framework can be employed as a teaching tool for general relativity.Comment: 7-pages, 5 figures, accepted for publication in the Publications of the Astronomical Society of Australia (Journal name corrected.

    Chemical aspects related to using recycled geopolymers as aggregates

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Despite extensive research into sustainability of geopolymers, end-of-life aspects have been largely overlooked. A recycling scenario is examined in this study. This requires an investigation of alkali leaching potential from a geopolymeric matrix. To study the feasibility of geopolymer cement (GPC) recycling, the migration of alkalis was evaluated for the first time on a microstructural level through energy dispersive X-ray (EDX) scanning electron microscopy (SEM) elemental mapping and leaching tests. Macroscale impacts were assessed through an investigation of Portland cement (PC) mortar properties affected by alkali concentration. Leaching tests indicated that alkalis immediately become available in aqueous environments, but the majority remain chemically or physically bound in the matrix. This type of leaching accelerates the initial setting of PC paste. Elemental mapping and EDX/SEM analysis showed a complex paste-aggregate interfacial transition zone. Exchange of calcium and sodium, revealed by the maps, resulted in the migration of sodium into the PC paste and the formation of additional calcium-silicon-based phases in the geopolymeric matrix. Strength values of mortars with 25% and 50% recycled aggregates (RA) showed negligible differences compared with the reference sample. Screening tests indicated a low potential for GPC RA inducing alkali-silica reaction. Transport of GPC RA alkalis and the underlying mechanisms were observed. This transport phenomenon was found to have minor effects on the properties of the PC mortar, indicating that recycling of geopolymers is a viable reuse practice.Peer reviewedFinal Published versio
    • …
    corecore