17 research outputs found

    Generation of a Chinese Hamster Ovary Cell Line Producing Recombinant Human Glucocerebrosidase

    Get PDF
    Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr(-)) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (similar to 64 and 59 kDa) and secreted (63-69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditionalmethods of screening high-producing recombinant cellsmay represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources.FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)CNPq (Conselho Nacional de Desenvolvimento Cientificoe Tecnologico)CNPQ(Conselho Nacional de Desenvolvimento Cientifico e Tecnologico)Fundacao ButantanFundacao Butanta

    Cloning and expression of human glucocerebrosidase in Chinese hamster ovary (CHO) cells.

    No full text
    Deficiência na enzima lisossomal glucocerebrosidase (GCR) resulta na doença de Gaucher. O tratamento atual consiste na administração da enzima exógena, produzida em células CHO. Porém, o medicamento disponível no mercado é extremamente custoso. Neste trabalho, propusemos a clonagem e a expressão da GCR humana em células CHO, visando a obtenção de um clone celular produtor para viabilizar a produção futura da enzima, a um custo menor, no Instituto Butantan. A expressão estável da GCR recombinante foi obtida a partir da transfecção de células CHO-dhfr- com o plasmídeo pED de expressão em células de mamíferos contendo o cDNA da GCR, seguido de amplificação gênica por MTX. A GCR foi detectada no extrato celular (~ 64 kDa) e secretada para o sobrenadante (63-69 kDa) em ensaios de western blotting, usando o anticorpo policlonal anti-GCR gerado neste trabalho. A enzima secretada hidrolisou o substrato 4-MUG e a sua produtividade foi estimada em 5,14 pg/célula/dia para o melhor subclone produtor, selecionado para a produção futura da GCR em larga escala.Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher\'s disease. Current treatment consists on enzyme replacement therapy by the administration of recombinant GCR produced in CHO cells. However, the medicine available in the market is extremely expensive. In this work, we proposed the cloning and expression of human GCR in CHO cells, in order to obtain a productive cellular clone for future production of GCR enzyme at a lower cost at the Butantan Institute. The stable expression of recombinant GCR was obtained after transfection of CHO-dhfr- cells with pED mammalian expression vector containing the GCR cDNA, followed by gene amplification with MTX. The GCR was detected by western blotting analysis, either as cell-associated (~ 64 kDa) or as secreted forms (63-69 kDa), using the anti-GCR polyclonal antibody produced in this work. The secreted enzyme was active on 4-MUG and was produced at a level of about 5,14 pg/cell/day for the best producer subclone, selected for subsequent steps of GCR production on large scale in next future

    Cloning and expression of human glucocerebrosidase in Chinese hamster ovary (CHO) cells.

    No full text
    Deficiência na enzima lisossomal glucocerebrosidase (GCR) resulta na doença de Gaucher. O tratamento atual consiste na administração da enzima exógena, produzida em células CHO. Porém, o medicamento disponível no mercado é extremamente custoso. Neste trabalho, propusemos a clonagem e a expressão da GCR humana em células CHO, visando a obtenção de um clone celular produtor para viabilizar a produção futura da enzima, a um custo menor, no Instituto Butantan. A expressão estável da GCR recombinante foi obtida a partir da transfecção de células CHO-dhfr- com o plasmídeo pED de expressão em células de mamíferos contendo o cDNA da GCR, seguido de amplificação gênica por MTX. A GCR foi detectada no extrato celular (~ 64 kDa) e secretada para o sobrenadante (63-69 kDa) em ensaios de western blotting, usando o anticorpo policlonal anti-GCR gerado neste trabalho. A enzima secretada hidrolisou o substrato 4-MUG e a sua produtividade foi estimada em 5,14 pg/célula/dia para o melhor subclone produtor, selecionado para a produção futura da GCR em larga escala.Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher\'s disease. Current treatment consists on enzyme replacement therapy by the administration of recombinant GCR produced in CHO cells. However, the medicine available in the market is extremely expensive. In this work, we proposed the cloning and expression of human GCR in CHO cells, in order to obtain a productive cellular clone for future production of GCR enzyme at a lower cost at the Butantan Institute. The stable expression of recombinant GCR was obtained after transfection of CHO-dhfr- cells with pED mammalian expression vector containing the GCR cDNA, followed by gene amplification with MTX. The GCR was detected by western blotting analysis, either as cell-associated (~ 64 kDa) or as secreted forms (63-69 kDa), using the anti-GCR polyclonal antibody produced in this work. The secreted enzyme was active on 4-MUG and was produced at a level of about 5,14 pg/cell/day for the best producer subclone, selected for subsequent steps of GCR production on large scale in next future

    Generation of Polyclonal Antibodies Against Recombinant Human Glucocerebrosidase Produced in Escherichia coli

    No full text
    Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher`s disease, the most common inherited storage disorder. Treatment consists of enzyme replacement therapy by the administration of recombinant GCR produced in Chinese hamster ovary cells. The production of anti-GCR antibodies has already been described with placenta-derived human GCR that requires successive chromatographic procedures. Here, we report a practical and efficient method to obtain anti-GCR polyclonal antibodies against recombinant GCR produced in Escherichia coli and further purified by a single step through nickel affinity chromatography. The purified GCR was used to immunize BALB/c mice and the induction of anti-GCR antibodies was evaluated by enzyme-linked immunosorbent assay. The specificity of the antiserum was also evaluated by western blot analysis against recombinant GCR produced by COS-7 cells or against endogenous GCR of human cell lines. GCR was strongly recognized by the produced antibodies, either as cell-associated or as secreted forms. The detected molecular masses of 59-66 kDa are in accordance to the expected size for glycosylated GCR. The GCR produced in E. coli would facilitate the production of polyclonal (shown here) and monoclonal antibodies and their use in the characterization of new biosimilar recombinant GCRs coming in the near future.FAPESPCNPqFundacao Butanta

    A Heterologous Multiepitope DNA Prime/Recombinant Protein Boost Immunisation Strategy for the Development of an Antiserum against Micrurus corallinus (Coral Snake) Venom.

    No full text
    BACKGROUND:Envenoming by coral snakes (Elapidae: Micrurus), although not abundant, represent a serious health threat in the Americas, especially because antivenoms are scarce. The development of adequate amounts of antielapidic serum for the treatment of accidents caused by snakes like Micrurus corallinus is a challenging task due to characteristics such as low venom yield, fossorial habit, relatively small sizes and ophiophagous diet. These features make it difficult to capture and keep these snakes in captivity for venom collection. Furthermore, there are reports of antivenom scarcity in USA, leading to an increase in morbidity and mortality, with patients needing to be intubated and ventilated while the toxin wears off. The development of an alternative method for the production of an antielapidic serum, with no need for snake collection and maintenance in captivity, would be a plausible solution for the antielapidic serum shortage. METHODS AND FINDINGS:In this work we describe the mapping, by the SPOT-synthesis technique, of potential B-cell epitopes from five putative toxins from M. corallinus, which were used to design two multiepitope DNA strings for the genetic immunisation of female BALB/c mice. Results demonstrate that sera obtained from animals that were genetically immunised with these multiepitope constructs, followed by booster doses of recombinant proteins lead to a 60% survival in a lethal dose neutralisation assay. CONCLUSION:Here we describe that the genetic immunisation with a synthetic multiepitope gene followed by booster doses with recombinant protein is a promising approach to develop an alternative antielapidic serum against M. corallinus venom without the need of collection and the very challenging maintenance of these snakes in captivity

    SPOT peptide synthesis scheme.

    No full text
    <p>(Black circles) Blank spots. (Cyan circles) Spots from Ag1 (Nxh8— 3FTx). (Red Circles) Spots from Ag2 (Nxh 7/3/1— 3FTx). (Yellow circles) Spots from Ag3 (3Ftx). (Blue circles) Spots from Ag4 (3Ftx). (Green circles) Spots from Ag5 (PLA<sub>2</sub>). (Highlighted spot sequences) Signal peptides, which were not considered for multiepitope gene design.</p

    RT-PCR from COS-7 cells transfected with all pSECTAG2A constructions.

    No full text
    <p>(M) 1kb Plus DNA ladder. (1) RT-PCR from pSECTAG2A-<i>ag1</i> transfected cells. (2) RT-PCR from pSECTAG2A-<i>ag2</i> transfected cells. (3) RT-PCR from pSECTAG2A-<i>ag3</i> transfected cells. (4) RT-PCR from pSECTAG2A-<i>ag4</i> transfected cells. (5) RT-PCR from pSECTAG2A-<i>ag5</i> transfected cells. (6) RT-PCR from pSECTAG2A (empty plasmid) transfected cells.</p

    Three dimensional modelling with solvent-accessible surface area (SASA) of all five antigens described in this work.

    No full text
    <p>Reactive epitopes are highlighted in orange. (A) 3D model of Ag1 (Nxh8) based on the crystal structure (PDB ID: 3nds) of <i>Naja nigricollis</i> toxin alpha (GMQE: 0.80 / Seq. identity: 54.10 / Seq. similarity: 0.48). (B) 3D model of Ag2 (Nxh7/3/1) based on the NMR structure (PDB ID: 1nor) of neurotoxin II from <i>Naja naja oxiana</i> (GMQE: 0.78 / Seq. identity: 40.35 / Seq. similarity: 0.48). (C) 3D model of Ag3 (3FTx) based on the crystal structure (PDB ID: 2h8u) of Bucain, a cardiotoxin from the Malayan Krait <i>Bungarus candidus</i> (GMQE: 0.89 / Seq. identity: 57.63 / Seq. similarity: 0.51). (D) 3D model of Ag4 (3FTx) based on the crystal structure (PDB ID: 4iye) of the green mamba, <i>Dendroaspis angusticeps</i>, ρ-Da1a toxin (GMQE: 0.75 / Seq. identity: 40.00 / Seq. similarity: 0.40). (E) 3D model of Ag5 (PLA<sub>2</sub>) based on the crystal structure (PDB ID: 1yxh) of a phospholipase A<sub>2</sub> from <i>Naja naja sagittifera</i> (GMQE: 0.82 / Seq. identity: 58.97 / Seq. similarity: 0.50). All images were generated using DeepView (Swiss PDB Viewer) [<a href="http://www.plosntds.org/article/info:doi/10.1371/journal.pntd.0004484#pntd.0004484.ref034" target="_blank">34</a>].</p

    Multiepitope DNA string sequence coding for epitopes detected from the putative PLA<sub>2</sub> from <i>M</i>. <i>corallinus</i>.

    No full text
    <p>Cysteine codons were exchanged by serine codons to avoid the formation of disulphide bond-mediated protein multimerisation. Epitopes were separated by a six residues linker. Restriction sites (red sequences) were inserted between epitopes to allow further DNA manipulation when required.</p
    corecore